Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

IL-10 polymorphism and cell-mediated immune response to Chlamydia trachomatis

Abstract

Chlamydia trachomatis infection induces an inflammatory response that is crucial in resolving acute infection but may also play a key role in the pathogenesis of C trachomatis associated infertility. The immune response is linked to cytokine secretion pattern which is influenced by the host genetic background. To study a relationship between interleukin-10 (IL-10) promoter −1082 polymorphism and cell-mediated immune response during C trachomatis infection in vitro, lymphocyte proliferation and cytokine (IL-10, IFN-γ, TNF-α, IL-2, IL-4 and IL-5) secretion were analysed in subjects with different IL-10 genotypes. Enhanced IL-10 secretion and reduced antigen-specific lymphocyte proliferative and IFN-γ responses were found in subjects with IL-10 −1082 GG genotype when compared to those with −1082 AA genotype. CD14+ monocytes were main source of IL-10 indicating that these cells are important regulators of the antigen-specific cell-mediated responses during active C trachomatis infection. We conclude that impaired cell-mediated response to C trachomatis is associated with IL-10 genotype in subjects with high IL-10 producing capacity. A comparison of immune markers between subjects with a history of noncomplicated and complicated infection is needed to further understand the confounding factors associated with the development of C trachomatis associated sequelae.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

Abbreviations

LP:

lymphocyte proliferation

PBMC:

peripheral blood mononuclear cells

TFI:

tubal factor infertility

CMI:

cell-mediated immune

References

  1. Cohen CR, Brunham RC . Pathogenesis of Chlamydia induced pelvic inflammatory disease. Sex Transm Infect 1999; 75: 21–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Witkin SS, Linhares I, Giraldo P, Jeremias J, Ledger WJ . Individual immunity and susceptibility to female genital tract infection. Am J Obstet Gynecol 2000; 183: 252–256.

    Article  CAS  PubMed  Google Scholar 

  3. Loomis WP, Starnbach MN . T cell responses to Chlamydia trachomatis. Curr Opin Microbiol 2002; 5: 87–91.

    Article  CAS  PubMed  Google Scholar 

  4. Stagg AJ, Tuffrey M, Woods C, Wunderink E, Knight SC . Protection against ascending infection of the genital tract by Chlamydia trachomatis is associated with recruitment of major histocompatibility complex class II antigen-presenting cells into uterine tissue. Infect Immun 1998; 66: 3535–3544.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Igietseme JU, Black CM, Caldwell HD . Chlamydia vaccines: strategies and status. BioDrugs 2002; 16: 19–35.

    Article  CAS  PubMed  Google Scholar 

  6. Debattista J, Timms P, Allan J, Allan J . Reduced levels of gamma-interferon secretion in response to chlamydial 60 kDa heat shock protein amongst women with pelvic inflammatory disease and a history of repeated Chlamydia trachomatis infections. Immunol Lett 2002; 81: 205–210.

    Article  CAS  PubMed  Google Scholar 

  7. Cohen GR, Koochesfahani KM, Meier AS, Shen C, Karunakaran K, Ondondo B et al. Immunoepidemiologic profile of Chlamydia trachomatis infection: importance of heat-shock protein 60 and interferon-γ. J Infect Dis 2005; 192: 591–599.

    Article  CAS  PubMed  Google Scholar 

  8. Yang X, HayGlass KT, Brunham RC . Genetically determined differences in IL-10 and IFN-gamma responses correlate with clearance of Chlamydia trachomatis mouse pneumonitis infection. J Immunol 1996; 156: 4338–4344.

    CAS  PubMed  Google Scholar 

  9. Igietseme JU, Anabana GA, Bolier J, Bowers S, Moore T, Belay T et al. Suppression of endogenous IL-10 gene expression in dendritic cells enhances antigen presentation for specific Th1 induction: potential for vaccine development. J Immunol 2000; 164: 4212–4219.

    Article  CAS  PubMed  Google Scholar 

  10. Yang X, Gartner J, Zhu L, Wang S, Brunham BC . IL-10 gene knockout mice show enhanced Th1-like protective immunity and absent granuloma formation following Chlamydia trachomatis lung infection. J Immunol 1999; 162: 1010–1017.

    CAS  PubMed  Google Scholar 

  11. Kinnunen A, Surcel H-M, Halttunen M, Tiitinen A, Morrison RP, Morrison SG et al. Chlamydia trachomatis heat shock protein-60 induced interferon-γ and interleukin-10 production in infertile women. Clin Exp Immunol 2003; 131: 299–303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Cohen CR, Sinei SS, Bukusi EA, Bwayo JJ, Holmes KK, Brunham RC . Human leukocyte antigen class II DQ alleles associated with Chlamydia trachomatis tubal infertility. Obstet Gynecol 2000; 95: 72–77.

    CAS  PubMed  Google Scholar 

  13. Cohen CR, Gichui J, Rukaria R, Sinei SS, Gaur LK, Brunham RC . Immunogenetic correlates for Chlamydia trachomatis-associated tubal infertility. Obstet Gynecol 2003; 101: 438–444.

    CAS  PubMed  Google Scholar 

  14. Kinnunen AH, Surcel H-M, Lehtinen M, Karhukorpi J, Tiitinen A, Halttunen M et al. HLA DQ alleles and interleukin-10 polymorphism associated with Chlamydia trachomatis-related tubal factor infertility: a case–control study. Hum Reprod 2002; 17: 2073–2078.

    Article  CAS  PubMed  Google Scholar 

  15. Mocellin S, Panelli MC, Wang E, Nagorsen D, Marincola FM . The dual role of IL-10. Trends Immunol 2003; 24: 36–43.

    Article  CAS  PubMed  Google Scholar 

  16. Wang C, Tang J, Geisler WM, Crowley-Nowick PA, Wilson CM, Kaslow RA . Human leukocyte antigen and cytokine gene variants as predictors of recurrent Chlamydia trachomatis infection in high-risk adolescents. J Infect Dis 2005; 191: 1084–1092.

    Article  CAS  PubMed  Google Scholar 

  17. Natividad A, Wilson J, Koch O, Holland MJ, Rockett K, Faal N et al. Risk of trachomatous scarring and trichiasis in Gambians varies with SNP haplotypes at the interferon-gamma and interleukin-10 loci. Genes Immun 2005; 6: 332–340.

    Article  CAS  PubMed  Google Scholar 

  18. Turner DM, Williams DM, Sankaran D, Lazarus M, Sinnott PJ, Hutchinson IV . An investigation of polymorphism in the interleukin-10 gene promoter. Eur J Immunogenet 1997; 24: 1–8.

    Article  CAS  PubMed  Google Scholar 

  19. Kinnunen A, Molander P, Morrison R, Lehtinen M, Karttunen R, Tiitinen A et al. Chlamydial heat shock protein 60-specific T cells in inflamed salpingeal tissue. Fertil Steril 2002; 77: 162–166.

    Article  PubMed  Google Scholar 

  20. Cohen CR, Nguti R, Bukusi EA, Lu H, Shen C, Luo M et al. Human immunodeficiency virus type 1-infected women exhibit reduced interferon-γ secretion after Chlamydia trachomatis stimulation of peripheral blood lymphocytes. J Infect Dis 2000; 182: 1672–1677.

    Article  CAS  PubMed  Google Scholar 

  21. Shemer Y, Sarov I . Inhibition of growth of Chlamydia trachomatis by human gamma interferon. Infect Immun 1985; 48: 592–595.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Beatty WL, Byrne GI, Morrison RP . Morphologic and antigenic characterization of interferon γ-mediated persistent Chlamydia trachomatis infection in vitro. Proc Natl Acad Sci USA 1993; 90: 3998–4002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hogan RJ, Mathews SA, Mukhopadhyay S, Summersgill JT, Timms P . Chlamydial persistence: beyond the biphasic paradigm. Infect Immun 2004; 72: 1843–1855.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Opal SM, Wherry JC, Grint P . Interleukin-10: potential benefits and possible risks in clinical infectious diseases. Clin Infect Dis 1998; 27: 1497–1507.

    Article  CAS  PubMed  Google Scholar 

  25. Byrne GI, Lehmann LK, Landry GJ . Induction of tryptophan catabolism is the mechanism for gamma-interferon-mediated inhibition of intracellular Chlamydia psittaci replication in T24 cells. Infect Immun 1986; 53: 347–351.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Chu HW, Honour JM, Rawlinson CA, Harbeck RJ, Martin RJ . Effects of respiratory Mycoplasma pneumoniae infection on allergen-induced bronchial hyperresponsiveness and lung inflammation in mice. Infect Immun 2003; 71: 1520–1526.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Abbas AK, Murphy KM, Sher A . Functional diversity of helper T lymphocytes. Nature 1996; 383: 787–793.

    Article  CAS  PubMed  Google Scholar 

  28. Elenkov IJ . Glucocorticoids and the Th1/Th2 balance. Ann NY Acad Sci 2004; 1024: 138–146.

    Article  CAS  PubMed  Google Scholar 

  29. Karhukorpi J, Karttunen R . Genotyping interleukin-10 high and low producers with single-tube bidirectional allele-specific amplification. Exp Clin Immunogenet 2001; 18: 67–70.

    Article  CAS  PubMed  Google Scholar 

  30. Saikku P, Wang SP . Chlamydia trachomatis immunotypes in Finland. APMIS 1987; 95: 131–134.

    CAS  Google Scholar 

  31. Surcel H-M, Syrjälä H, Leinonen M, Saikku P, Herva E . Cell-mediated immunity to Chlamydia pneumoniae measured as lymphocyte blast transformation in vitro. Infect Immun 1993; 61: 2196–2199.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Mrs Marja Siitonen and Mrs Marja Suorsa for excellent technical assistance. The study was supported by Research Grants from the Helsinki University Hospital.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H-M Surcel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Öhman, H., Tiitinen, A., Halttunen, M. et al. IL-10 polymorphism and cell-mediated immune response to Chlamydia trachomatis. Genes Immun 7, 243–249 (2006). https://doi.org/10.1038/sj.gene.6364293

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gene.6364293

Keywords

This article is cited by

Search

Quick links