Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

A nonconservative, coding single-nucleotide polymorphism in the N-terminal region of lactoferrin is associated with aggressive periodontitis in an African-American, but not a Caucasian population

Abstract

Lactoferrin is an antimicrobial protein which plays an important role in regulating bacteria that are associated with aggressive periodontitis. Lactoferrin kills directly (via its strongly cationic N-terminal region) and indirectly, through sequestering the iron that bacteria require for growth. As aggressive periodontitis has a strong heritable component, we hypothesized that genetic variation within the lactoferrin gene may play a role in susceptibility to this condition. We have identified and examined a novel, functional, single-point A/G nucleotide mutation causing a threonine/alanine substitution at position 11 (T11A) of the secreted lactoferrin protein. In a pilot case-controlled study of aggressive periodontitis, analysis of 46 African-American patients and 78 controls showed that patients were twice as likely to express the G nucleotide (alanine) allele over controls (60.3 vs 30.4%; P=0.0007, odds ratio=2.564, 95% CI=1.475–4.459). A Caucasian population of 77 patients and 131 controls showed no such association (P=0.5201, odds ratio=0.862, 95% CI=0.548–1.356). The data presented provide a new insight into the genetic susceptibility to aggressive periodontitis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Appelmelk BJ, An YQ, Geerts M, Thijs BG, de Boer HA, MacLaren DM et al. Lactoferrin is a lipid A-binding protein. Infect Immun 1994; 62: 2628–2632.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Caccavo D, Afeltra A, Pece S, Giuliani G, Freudenberg M, Galanos C et al. Lactoferrin–lipid A–lipopolysaccharide interaction: inhibition by anti-human lactoferrin monoclonal antibody AGM 10.14. Infect Immun 1999; 67: 4668–4672.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Chapple DS, Joannou CL, Mason DJ, Shergill JK, Odell EW, Gant V et al. A helical region on human lactoferrin. Its role in antibacterial pathogenesis. Adv Exp Med Biol 1998; 443: 215–220.

    Article  CAS  Google Scholar 

  4. Yamauchi K, Tomita M, Giehl TJ, Ellison III RT . Antibacterial activity of lactoferrin and a pepsin-derived lactoferrin peptide fragment. Infect Immun 1993; 61: 719–728.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Zhang GH, Mann DM, Tsai CM . Neutralization of endotoxin in vitro and in vivo by a human lactoferrin-derived peptide. Infect Immun 1999; 67: 1353–1358.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Cohen MS, Mao J, Rasmussen GT, Serody JS, Britigan BE . Interaction of lactoferrin and lipopolysaccharide (LPS): effects on the antioxidant property of lactoferrin and the ability of LPS to prime human neutrophils for enhanced superoxide formation. J Infect Dis 1992; 166: 1375–1378.

    Article  CAS  Google Scholar 

  7. Chapple DS, Mason DJ, Joannou CL, Odell EW, Gant V, Evans RW et al. Structure and association of human lactoferrin peptides with Escherichia coli lipopolysaccharide. Antimicrob Agents Chemother 2004; 48: 2190–2198.

    Article  CAS  Google Scholar 

  8. Elass-Rochard E, Roseanu A, Legrand D, Trif M, Salmon V, Motas C et al. Lactoferrin–lipopolysaccharide interaction: involvement of the 28–34 loop region of human lactoferrin in the high-affinity binding to Escherichia coli 055B5 lipopolysaccharide. Biochem J 1995; 312 (Part 3): 839–845.

    Article  CAS  Google Scholar 

  9. Farnaud S, Spiller C, Moriarty LC, Patel A, Gant V, Odell EW et al. Interactions of lactoferricin-derived peptides with LPS and antimicrobial activity. FEMS Microbiol Lett 2004; 233: 193–199.

    Article  CAS  Google Scholar 

  10. Machnicki M, Zimecki M, Zagulski T . Lactoferrin regulates the release of tumour necrosis factor alpha and interleukin 6 in vivo. Int J Exp Pathol 1993; 74: 433–439.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Haversen L, Ohlsson BG, Hahn-Zoric M, Hanson LA, Mattsby-Baltzer I . Lactoferrin down-regulates the LPS-induced cytokine production in monocytic cells via NF-kappa B. Cell Immunol 2002; 220: 83–95.

    Article  CAS  Google Scholar 

  12. Mattsby-Baltzer I, Roseanu A, Motas C, Elverfors J, Engberg I, Hanson LA et al. Lactoferrin or a fragment thereof inhibits the endotoxin-induced interleukin-6 response in human monocytic cells. Pediatr Res 1996; 40: 257–262.

    Article  CAS  Google Scholar 

  13. Alugupalli KR, Kalfas S . Inhibitory effect of lactoferrin on the adhesion of Actinobacillus actinomycetemcomitans and Prevotella intermedia to fibroblasts and epithelial cells. Apmis 1995; 103: 154–160.

    Article  CAS  Google Scholar 

  14. Fine DH, Furgang D . Lactoferrin iron levels affect attachment of Actinobacillus actinomycetemcomitans to buccal epithelial cells. J Periodontol 2002; 73: 616–623.

    Article  CAS  Google Scholar 

  15. Groenink J, Walgreen-Weterings E, Nazmi K, Bolscher JG, Veerman EC, van Winkelhoff AJ et al. Salivary lactoferrin and low-Mr mucin MG2 in Actinobacillus actinomycetemcomitans-associated periodontitis. J Clin Periodontol 1999; 26: 269–275.

    Article  CAS  Google Scholar 

  16. Kalfas S, Andersson M, Edwardsson S, Forsgren A, Naidu AS . Human lactoferrin binding to Porphyromonas gingivalis, Prevotella intermedia and Prevotella melaninogenica. Oral Microbiol Immunol 1991; 6: 350–355.

    Article  CAS  Google Scholar 

  17. Shi Y, Kong W, Nakayama K . Human lactoferrin binds and removes the hemoglobin receptor protein of the periodontopathogen Porphyromonas gingivalis. J Biol Chem 2000; 275: 30002–30008.

    Article  CAS  Google Scholar 

  18. Loe H, Brown LJ . Early onset periodontitis in the United States of America. J Periodontol 1991; 62: 608–616.

    Article  CAS  Google Scholar 

  19. Singh PK, Parsek MR, Greenberg EP, Welsh MJ . A component of innate immunity prevents bacterial biofilm development. Nature 2002; 417: 552–555.

    Article  CAS  Google Scholar 

  20. Singh PK . Iron sequestration by human lactoferrin stimulates P. aeruginosa surface motility and blocks biofilm formation. Biometals 2002; 17: 267–270.

    Article  Google Scholar 

  21. Marazita ML, Burmeister JA, Gunsolley JC, Koertge TE, Lake K, Schenkein HA et al. Evidence for autosomal dominant inheritance and race-specific heterogeneity in early-onset periodontitis. J Periodontol 1994; 65: 623–630.

    Article  CAS  Google Scholar 

  22. Velliyagounder K, Kaplan JB, Furgang D, Legarda D, Diamond G, Parkin RE et al. One of two human lactoferrin variants exhibits increased antibacterial and transcriptional activation activities and is associated with localized juvenile periodontitis. Infect Immun 2003; 71: 6141–6147.

    Article  CAS  Google Scholar 

  23. Kinane DF, Hodge P, Eskdale J, Ellis R, Gallagher G . Analysis of genetic polymorphisms at the interleukin-10 and tumour necrosis factor loci in early-onset periodontitis. J Periodont Res 2003; 34: 379–386.

    Article  Google Scholar 

  24. Wakeland EK, Liu K, Graham RR, Behrens TW . Delineating the genetic basis of systemic lupus erythematosus. Immunity 2001; 15: 397–408.

    Article  CAS  Google Scholar 

  25. Kinane DF, Hart TC . Genes and gene polymorphisms associated with periodontal disease. Crit Rev Oral Biol Med 2003; 14: 430–449.

    Article  CAS  Google Scholar 

  26. Soderstrom T, Wikstrom M . Decreased lactoferrin content in granulocytes from subjects with Actinobacillus actinomycetemcomitans associated periodontal diseases. J Parodontol 1990; 9: 195–199.

    CAS  PubMed  Google Scholar 

  27. Wang D, Pabst KM, Aida Y, Pabst MJ . Lipopolysaccharide-inactivating activity of neutrophils is due to lactoferrin. J Leukoc Biol 1995; 57: 865–874.

    Article  CAS  Google Scholar 

  28. DiRienzo JM, McKay TL . Identification and characterization of genetic cluster groups of Actinobacillus actinomycetemcomitans isolated from the human oral cavity. J Clin Microbiol 1994; 32: 75–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. DiRienzo JM, Slots J, Sixou M, Sol MA, Harmon R, McKay TL et al. Specific genetic variants of Actinobacillus actinomycetemcomitans correlate with disease and health in a regional population of families with localized juvenile periodontitis. Infect Immun 1994; 62: 3058–3065.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Ellison III RT, Giehl TJ . Killing of gram-negative bacteria by lactoferrin and lysozyme. J Clin Invest 1991; 88: 1080–1091.

    Article  CAS  Google Scholar 

  31. Ulvatne H, Vorland LH . Bactericidal kinetics of 3 lactoferricins against Staphylococcus aureus and Escherichia coli. Scand J Infect Dis 2001; 33: 507–511.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Institutes of Health, National Institute of Dental and Craniofacial Research grant number 1R21DE014997, by the Health Disparities Program (WJJ and JE) and by the New Jersey Dental School (GPL and JE).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G Gallagher.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jordan, W., Eskdale, J., Lennon, G. et al. A nonconservative, coding single-nucleotide polymorphism in the N-terminal region of lactoferrin is associated with aggressive periodontitis in an African-American, but not a Caucasian population. Genes Immun 6, 632–635 (2005). https://doi.org/10.1038/sj.gene.6364239

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gene.6364239

Keywords

This article is cited by

Search

Quick links