Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Full Paper
  • Published:

CUL1, a component of E3 ubiquitin ligase, alters lymphocyte signal transduction with possible effect on rheumatoid arthritis

Abstract

Ubiquitination affects various immune processes and E3 ubiquitin ligases (E3) play an important role in determining substrate specificity. We identified 11 human E3 ligase genes of potential importance in pathogenesis of autoimmune diseases by search of public databases and screened them for candidacy of biological investigation with case–control linkage disequilibrium tests on multiple SNPs in the genes using rheumatoid arthritis (RA) as a model of autoimmune diseases. Significant association with RA was observed in an SNP in intron 3 of Cullin 1 (CUL1) that affected transcriptional efficiency of the promoter activity in lymphocytic cell lines. Quantitative expression analysis revealed that CUL1 mRNA was highly detected in lymphoid tissues including spleen and tonsil, and was specifically expressed in T and B lymphocytes in fractionated peripheral leukocytes. Histological evaluation of tonsils indicated that CUL1 protein expression was relatively specific for maturing germinal centers. Suppression of CUL1 expression had influence on the phenotype of T-cell line, that is, it inhibited IL-8 induction, which is known to play an important role in the migration of inflammatory cells into the affected area seen in RA. Our data suggest that the regulation of CUL1 expression in immunological tissues may affect the susceptibility of RA via altering lymphocyte signal transduction.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Pickart CM . Back to the future with ubiquitin. Cell 2004; 116: 181–190.

    Article  CAS  Google Scholar 

  2. Hicke L, Dunn R . Regulation of membrane protein transport by ubiquitin and ubiquitin-binding proteins. Annu Rev Cell Dev Biol 2003; 19: 141–172.

    Article  CAS  Google Scholar 

  3. Hershko A, Ciechanover A . The ubiquitin system. Annu Rev Biochem 1998; 67: 425–479.

    Article  CAS  Google Scholar 

  4. Hatakeyama S, Nakayama KI . U-box proteins as a new family of ubiquitin ligases. Biochem Biophys Res Commun 2003; 302: 635–645.

    Article  CAS  Google Scholar 

  5. Marchese A, Raiborg C, Santini F, Keen JH, Stenmark H, Benovic JL . The E3 ubiquitin ligase AIP4 mediates ubiquitination and sorting of the G protein-coupled receptor CXCR4. Dev Cell 2003; 5: 709–722.

    Article  CAS  Google Scholar 

  6. Kumar KG, Tang W, Ravindranath AK, Clark WA, Croze E, Fuchs SY . SCF(HOS) ubiquitin ligase mediates the ligand-induced down-regulation of the interferon-alpha receptor. EMBO J 2003; 22: 5480–5490.

    Article  CAS  Google Scholar 

  7. Soubeyran P, Kowanetz K, Szymkiewicz I, Langdon WY, Dikic I . Cbl–CIN85–endophilin complex mediates ligand-induced downregulation of EGF receptors. Nature 2002; 416: 183–187.

    Article  CAS  Google Scholar 

  8. Miyazaki K, Ozaki T, Kato C et al. A novel HECT-type E3 ubiquitin ligase, NEDL2, stabilizes p73 and enhances its transcriptional activity. Biochem Biophys Res Commun 2003; 308: 106–113.

    Article  CAS  Google Scholar 

  9. Takano Y, Adachi S, Okuno M et al. The RING finger protein, RNF8, interacts with retinoid X receptor {alpha} and enhances Its transcription-stimulating activity. J Biol Chem 2004; 279: 18926–18934.

    Article  CAS  Google Scholar 

  10. Heissmeyer V, Krappmann D, Hatada EN, Scheidereit C . Shared pathways of I{kappa}B kinase-induced SCF{beta}TrCP-mediated ubiquitination and degradation for the NF-{kappa}B precursor p105 and I{kappa}B{alpha}. Mol Cell Biol 2001; 21: 1024–1035.

    Article  CAS  Google Scholar 

  11. Amir RE, Iwai K, Ciechanover A . The NEDD8 pathway is essential for SCFbeta-TrCP-mediated ubiquitination and processing of the NF-kappa B precursor p105. J Biol Chem 2002; 277: 23253–23259.

    Article  CAS  Google Scholar 

  12. Pickart CM . Mechanisms underlying ubiquitination. Annu Rev Biochem 2001; 70: 503–533.

    Article  CAS  Google Scholar 

  13. Kloetzel PM, Ossendorp F . Proteasome and peptidase function in MHC-class-I-mediated antigen presentation. Curr Opin Immunol 2004; 16: 76–81.

    Article  CAS  Google Scholar 

  14. Kloetzel PM . Generation of major histocompatibility complex class I antigens: functional interplay between proteasomes and TPPII. Nat Immunol 2004; 5: 661–669.

    Article  CAS  Google Scholar 

  15. Deng L, Wang C, Spencer E et al. Activation of the IkappaB kinase complex by TRAF6 requires a dimeric ubiquitin-conjugating enzyme complex and a unique polyubiquitin chain. Cell 2000; 103: 351–361.

    Article  CAS  Google Scholar 

  16. Wang C, Deng L, Hong M, Akkaraju GR, Inoue J, Chen ZJ . TAK1 is a ubiquitin-dependent kinase of MKK and IKK. Nature 2001; 412: 346–351.

    Article  CAS  Google Scholar 

  17. Nakayama K, Hatakeyama S, Maruyama S et al. Impaired degradation of inhibitory subunit of NF-{kappa}B (I{kappa}B) and {beta}-catenin as a result of targeted disruption of the {beta}-TrCP1 gene. Proc Natl Acad Sci USA 2003; 100: 8752–8757.

    Article  CAS  Google Scholar 

  18. Fuchs SY, Chen A, Xiong Y, Pan ZQ, Ronai Z . HOS, a human homolog of Slimb, forms an SCF complex with Skp1 and Cullin1 and targets the phosphorylation-dependent degradation of IkappaB and beta-catenin. Oncogene 1999; 18: 2039–2046.

    Article  CAS  Google Scholar 

  19. Cohen S, Achbert-Weiner H, Ciechanover A . Dual effects of I{kappa}B kinase {beta}-mediated phosphorylation on p105 fate: SCF{beta}-TrCP-dependent degradation and SCF{beta}-TrCP-independent processing. Mol Cell Biol 2004; 24: 475–486.

    Article  CAS  Google Scholar 

  20. Wertz IE, O'Rourke KM, Zhou H et al. De-ubiquitination and ubiquitin ligase domains of A20 downregulate NF-[kappa]B signalling. Nature 2004; 430: 694–699.

    Article  CAS  Google Scholar 

  21. Anandasabapathy N, Ford GS, Bloom D et al. GRAIL: an E3 ubiquitin ligase that inhibits cytokine gene transcription is expressed in anergic CD4+ T cells. Immunity 2003; 18: 535–547.

    Article  CAS  Google Scholar 

  22. Seroogy CM, Soares L, Ranheim EA et al. The gene related to anergy in lymphocytes, an E3 ubiquitin ligase, is necessary for anergy induction in CD4T cells. J Immunol 2004; 173: 79–85.

    Article  CAS  Google Scholar 

  23. Fang D, Elly C, Gao B et al. Dysregulation of T lymphocyte function in itchy mice: a role for Itch in TH2 differentiation. Nat Immunol 2002; 3: 281–287.

    Article  CAS  Google Scholar 

  24. Naramura M, Jang IK, Kole H, Huang F, Haines D, Gu H . c-Cbl and Cbl-b regulate T cell responsiveness by promoting ligand-induced TCR down-modulation. Nat Immunol 2002; 3: 1192–1199.

    Article  CAS  Google Scholar 

  25. Sohn HW, Gu H, Pierce SK . Cbl-b negatively regulates B cell antigen receptor signaling in mature B cells through ubiquitination of the tyrosine kinase Syk. J Exp Med 2003; 197: 1511–1524.

    Article  CAS  Google Scholar 

  26. Amano T, Yamasaki S, Yagishita N et al. Synoviolin/Hrd1, an E3 ubiquitin ligase, as a novel pathogenic factor for anthropathy. Genes Dev 2003; 17: 2436–2449.

    Article  CAS  Google Scholar 

  27. Suzuki A, Yamada R, Chang X et al. Functional haplotypes of PADI4, encoding citrullinating enzyme peptidylarginine deiminase 4, are associated with rheumatoid arthritis. Nat Genet 2003; 34: 395–402.

    Article  CAS  Google Scholar 

  28. Tokuhiro S, Yamada R, Chang X et al. An intronic SNP in a RUNX1 binding site of SLC22A4, encoding an organic cation transporter, is associated with rheumatoid arthritis. Nat Genet 2003; 35: 341–348.

    Article  CAS  Google Scholar 

  29. Begovich AB, Carlton VE, Honigberg LA et al. A missense single-nucleotide polymorphism in a gene encoding a protein tyrosine phosphatase (PTPN22) is associated with rheumatoid arthritis. Am J Hum Genet 2004; 75: 330–337.

    Article  CAS  Google Scholar 

  30. Kipreos ET, Lander LE, Wing JP, He WW, Hedgecock EM . cul-1 is required for cell cycle exit in C. elegans and identifies a novel gene family. Cell 1996; 85: 829–839.

    Article  CAS  Google Scholar 

  31. Dealy MJ, Nguyen KV, Lo J et al. Loss of Cul1 results in early embryonic lethality and dysregulation of cyclin E. Nat Genet 1999; 23: 245–248.

    Article  CAS  Google Scholar 

  32. Wu K, Fuchs SY, Chen A et al. The SCFHOS/beta-TRCP-ROC1 E3 ubiquitin ligase utilizes two distinct domains within CUL1 for substrate targeting and ubiquitin ligation. Mol Cell Biol 2000; 20: 1382–1393.

    Article  CAS  Google Scholar 

  33. Pan ZQ, Kentsis A, Dias DC, Yamoah K, Wu K . Nedd8 on cullin: building an expressway to protein destruction. Oncogene 2004; 23: 1985–1997.

    Article  CAS  Google Scholar 

  34. Nakayama K, Nagahama H, Minamishima YA et al. Targeted disruption of Skp2 results in accumulation of cyclin E and p27(Kip1), polyploidy and centrosome overduplication. EMBO J 2000; 19: 2069–2081.

    Article  CAS  Google Scholar 

  35. Haga H, Yamada R, Ohnishi Y, Nakamura Y, Tanaka T . Gene-based SNP discovery as part of the Japanese Millennium Genome Project: identification of 190 562 genetic variations in the human genome. Single-nucleotide polymorphism. J Hum Genet 2002; 47: 605–610.

    Article  CAS  Google Scholar 

  36. Piva R, Liu J, Chiarle R, Podda A, Pagano M, Inghirami G . In vivo interference with Skp1 function leads to genetic instability and neoplastic transformation. Mol Cell Biol 2002; 22: 8375–8387.

    Article  CAS  Google Scholar 

  37. Wojcik EJ, Glover DM, Hays TS . The SCF ubiquitin ligase protein slimb regulates centrosome duplication in Drosophila. Curr Biol 2000; 10: 1131–1134.

    Article  CAS  Google Scholar 

  38. Guzman-Rojas L, Sims-Mourtada JC, Rangel R, Martinez-Valdez H . Life and death within germinal centres: a double-edged sword. Immunology 2002; 107: 167–175.

    Article  CAS  Google Scholar 

  39. Weyand CM, Goronzy JJ . Ectopic germinal center formation in rheumatoid synovitis. Ann NY Acad Sci 2003; 987: 140–149.

    Article  CAS  Google Scholar 

  40. Ozaki K, Inoue K, Sato H et al. Functional variation in LGALS2 confers risk of myocardial infarction and regulates lymphotoxin-[alpha] secretion in vitro. Nature 2004; 429: 72–75.

    Article  CAS  Google Scholar 

  41. Ozaki K, Ohnishi Y, Iida A et al. Functional SNPs in the lymphotoxin-alpha gene that are associated with susceptibility to myocardial infarction. Nat Genet 2002; 32: 650–654.

    Article  CAS  Google Scholar 

  42. Nakamura K, Kennedy MA, Baldan A, Bojanic DD, Lyons K, Edwards PA . Expression and regulation of multiple murine ATP-binding cassette transporter G1 mRNAs/isoforms that stimulate cellular cholesterol efflux to high density lipoprotein. J Biol Chem 2004; 279: 45980–45989.

    Article  CAS  Google Scholar 

  43. Heinemeyer T, Wingender E, Reuter I et al. Databases on transcriptional regulation: TRANSFAC, TRRD and COMPEL. Nucleic Acids Res 1998; 26: 362–367.

    Article  CAS  Google Scholar 

  44. Bories JC, Willerford DM, Grevin D et al. Increased T-cell apoptosis and terminal B-cell differentiation induced by inactivation of the Ets-1 proto-oncogene. Nature 1995; 377: 635–638.

    Article  CAS  Google Scholar 

  45. Muthusamy N, Barton K, Leiden JM . Defective activation and survival of T cells lacking the Ets-1 transcription factor. Nature 1995; 377: 639–642.

    Article  CAS  Google Scholar 

  46. Mukaida N, Mahe Y, Matsushima K . Cooperative interaction of nuclear factor-kappa B- and cis-regulatory enhancer binding protein-like factor binding elements in activating the interleukin-8 gene by pro-inflammatory cytokines. J Biol Chem 1990; 265: 21128–21133.

    CAS  PubMed  Google Scholar 

  47. Hwang SY, Kim JY, Kim KW et al. IL-17 induces production of IL-6 and IL-8 in rheumatoid arthritis synovial fibroblasts via NF-kappaB- and PI3-kinase/Akt-dependent pathways. Arthritis Res Ther 2004; 6: R120–R128.

    Article  CAS  Google Scholar 

  48. Ohnishi Y, Tanaka T, Ozaki K, Yamada R, Suzuki H, Nakamura Y . A high-throughput SNP typing system for genome-wide association studies. J Hum Genet 2001; 46: 471–477.

    Article  CAS  Google Scholar 

  49. Miyazawa K, Mori A, Yamamoto K, Okudaira H . Transcriptional roles of CCAAT/enhancer binding protein-beta, nuclear factor-kappaB, and C-promoter binding factor 1 in interleukin (IL)-1beta-induced IL-6 synthesis by human rheumatoid fibroblast-like synoviocytes. J Biol Chem 1998; 273: 7620–7627.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank members of the Laboratory for Rheumatic Diseases for their technical assistance; H Kawakami and T Kawaguchi for their computer programming; S Yoshino for clinical samples; K Watanabe and T Hirai for assistance in search of various kinds of databases; M Ono, T Takahashi, T Ohtsuka and M Nakayama for discussions. This work was supported by a grant from the Japanese Millenium Project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R Yamada.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kawaida, R., Yamada, R., Kobayashi, K. et al. CUL1, a component of E3 ubiquitin ligase, alters lymphocyte signal transduction with possible effect on rheumatoid arthritis. Genes Immun 6, 194–202 (2005). https://doi.org/10.1038/sj.gene.6364177

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gene.6364177

Keywords

This article is cited by

Search

Quick links