Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Full Paper
  • Published:

Generation of a functional, soluble tapasin protein from an alternatively spliced mRNA

Abstract

The loading of newly synthesised MHC class I molecules (MHCI) with peptides requires the involvement of several endoplasmic reticulum (ER)-resident cofactors including calnexin, calreticulin, transporter associated with antigen processing, ERp57 and tapasin. In the absence of tapasin, MHC I complexes are loaded with suboptimal peptides and their recognition by cytotoxic T cells raised to high-affinity, immunodominant peptide epitopes is impaired. Here, we describe the cloning and functional assessment of an alternative spliced form of tapasin. From the EST database, we obtained a partially spliced tapasin cDNA that retained introns 4–6. When transfected into the tapasin-deficient cell line 0.220, the cDNA produced an alternatively spliced tapasin transcript that contained intron 5 (74 bp). This introduced a new stop codon that terminated translation immediately before the putative transmembrane domain and led to a tapasin molecule containing the lumenal domain plus 8 extra novel amino acids at its C-terminus. This molecule promoted peptide loading of HLA-B5 in 0.220 cell line, and restored normal HLA-B5 surface expression. However, the peptides loaded onto HLA-B5 were suboptimal compared to those loaded onto HLA-B5 in the presence of wild-type tapasin.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Williams A, Peh CA, Elliott T . The cell biology of MHC class I antigen presentation. Tissue Antigens 2002; 59: 3–17.

    Article  CAS  Google Scholar 

  2. Princiotta MF, Finzi D, Qian SB et al. Quantitating protein synthesis, degradation, and endogenous antigen processing. Immunity 2003; 18: 343–354.

    Article  CAS  Google Scholar 

  3. Schubert U, Anton LC, Gibbs J, Norbury CC, Yewdell JW, Bennink JR . Rapid degradation of a large fraction of newly synthesized proteins by proteasomes. Nature 2000; 404: 770–774.

    Article  CAS  Google Scholar 

  4. Sadasivan B, Lehner PJ, Ortmann B, Spies T, Cresswell P . Roles for calreticulin and a novel glycoprotein, tapasin, in the interaction of MHC class I molecules with TAP. Immunity 1996; 5: 103–114.

    Article  CAS  Google Scholar 

  5. Ortmann B, Androlewicz MJ, Cresswell P . MHC class I/beta 2-microglobulin complexes associate with TAP transporters before peptide binding. Nature 1994; 368: 864–867.

    Article  CAS  Google Scholar 

  6. Ortmann B, Copeman J, Lehner PJ et al. A critical role for tapasin in the assembly and function of multimeric MHC class I-TAP complexes. Science 1997; 277: 1306–1309.

    Article  CAS  Google Scholar 

  7. Gao B, Adhikari R, Howarth M et al. Assembly and antigen-presenting function of MHC class I molecules in cells lacking the ER chaperone calreticulin. Immunity 2002; 16: 99–109.

    Article  CAS  Google Scholar 

  8. Dick TP, Bangia N, Peaper DR, Cresswell P . Disulfide bond isomerization and the assembly of MHC class I-peptide complexes. Immunity 2002; 16: 87–98.

    Article  CAS  Google Scholar 

  9. Serwold T, Gonzalez F, Kim J, Jacob R, Shastri N . ERAAP customizes peptides for MHC class I molecules in the endoplasmic reticulum. Nature 2002; 419: 480–483.

    Article  CAS  Google Scholar 

  10. Saric T, Beninga J, Graef CI, Akopian TN, Rock KL, Goldberg AL . Major histocompatibility complex class I-presented antigenic peptides are degraded in cytosolic extracts primarily by thimet oligopeptidase. J Biol Chem 2001; 276: 36474–36481.

    Article  CAS  Google Scholar 

  11. Brocke P, Garbi N, Momburg F, Hammerling GJ . HLA-DM, HLA-DO and tapasin: functional similarities and differences. Curr Opin Immunol 2002; 14: 22–29.

    Article  CAS  Google Scholar 

  12. Bangia N, Lehner PJ, Hughes EA, Surman M, Cresswell P . The N-terminal region of tapasin is required to stabilize the MHC class I loading complex. Eur J Immunol 1999; 29: 1858–1870.

    Article  CAS  Google Scholar 

  13. Hughes EA, Cresswell P . The thiol oxidoreductase ERp57 is a component of the MHC class I peptide-loading complex. Curr Biol 1998; 8: 709–712.

    Article  CAS  Google Scholar 

  14. Williams AP, Peh CA, Purcell AW, McCluskey J, Elliot T . Optimization of the MHC class I peptide cargo is dependent on tapasin. Immunity 2002; 16: 509–520.

    Article  CAS  Google Scholar 

  15. Tan P, Kropshofer H, Mandelboim O, Bulbuc N, Hammerling GJ, Momburg F . Recruitment of MHC class I molecules by tapasin into the transporter associated with antigen processing-associated complex is essential for optimal peptide loading. J Immunol 2002; 168: 1950–1960.

    Article  CAS  Google Scholar 

  16. Chun T, Grandea III AG, Lybarger L, Forman J, Van Kaer L, Wang CR . Functional roles of TAP and tapasin in the assembly of M3-N-formylated peptide complexes. J Immunol 2001; 167: 1507–1514.

    Article  CAS  Google Scholar 

  17. Park B, Ahn K . An essential function of tapasin in quality control of HLA-G molecules. J Biol Chem 2003.

  18. Peh CA, Burrows SR, Barnden M et al. HLA-B27-restricted antigen presentation in the absence of tapasin reveals polymorphism in mechanisms of HLA class I peptide loading. Immunity 1998; 8: 531–542.

    Article  CAS  Google Scholar 

  19. Garbi N, Tan P, Diehl AD et al. Impaired immune responses and altered peptide repertoire in tapasin-deficient mice. Nat Immunol 2000; 1: 234–238.

    Article  CAS  Google Scholar 

  20. Grandea III AG, Golovina TN, Hamilton SE et al. Impaired assembly yet normal trafficking of MHC class I molecules in tapasin mutant mice. Immunity 2000; 13: 213–222.

    Article  CAS  Google Scholar 

  21. Herberg JA, Sgouros J, Jones T et al. Genomic analysis of the tapasin gene, located close to the TAP loci in the MHC. Eur J Immunol 1998; 28: 459–467.

    Article  CAS  Google Scholar 

  22. Lehner PJ, Surman MJ, Cresswell P . Soluble tapasin restores MHC class I expression and function in the tapasin-negative cell line 0.220. Immunity 1998; 8: 221–231.

    Article  CAS  Google Scholar 

  23. Turnquist HR, Vargas SE, Reber AJ et al. A region of tapasin that affects L(d) binding and assembly. J Immunol 2001; 167: 4443–4449.

    Article  CAS  Google Scholar 

  24. Altschul SF, Madden TL, Schaffer AA et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 1997; 25: 3389–3402.

    Article  CAS  Google Scholar 

  25. Copeman J, Bangia N, Cross JC, Cresswell P . Elucidation of the genetic basis of the antigen presentation defects in the mutant cell line 0.220 reveals polymorphism and alternative splicing of the tapasin gene. Eur J Immunol 1998; 28: 3783–3791.

    Article  CAS  Google Scholar 

  26. Greenwood R, Shimizu Y, Sekhon GS, DeMars R . Novel allele-specific, post-translational reduction in HLA class I surface expression in a mutant human B cell line. J Immunol 1994; 153: 5525–5536.

    CAS  PubMed  Google Scholar 

  27. Park B, Lee S, Kim E, Ahn K . A single polymorphic residue within the peptide-binding cleft of MHC class I molecules determines spectrum of tapasin dependence. J Immunol 2003; 170: 961–968.

    Article  CAS  Google Scholar 

  28. Dedier S, Reinelt S, Reitinger T, Folkers G, Rognan D . Thermodynamic stability of HLA-B*2705. Peptide complexes. Effect of peptide and major histocompatibility complex protein mutations. J Biol Chem 2000; 275: 27055–27061.

    CAS  PubMed  Google Scholar 

  29. Tan L, Andersen MH, Elliott T, Haurum JS . An improved assembly assay for peptide binding to HLA-B*2705 and H-2K(k) class I MHC molecules. J Immunol Methods 1997; 209: 25–36.

    Article  CAS  Google Scholar 

  30. Patel AA, McCarthy M, Steitz JA . The splicing of U12-type introns can be a rate-limiting step in gene expression. EMBO J 2002; 21: 3804–3815.

    Article  CAS  Google Scholar 

  31. Faustino NA, Cooper TA . Pre-mRNA splicing and human disease. Genes Dev 2003; 17: 419–437.

    Article  CAS  Google Scholar 

  32. Gromme M, Uytdehaag FG, Janssen H et al. Recycling MHC class I molecules and endosomal peptide loading. Proc Natl Acad Sci USA 1999; 96: 10326–10331.

    Article  CAS  Google Scholar 

  33. Castellino F, Boucher PE, Eichelberg K et al. Receptor-mediated uptake of antigen/heat shock protein complexes results in major histocompatibility complex class I antigen presentation via two distinct processing pathways. J Exp Med 2000; 191: 1957–1964.

    Article  CAS  Google Scholar 

  34. Kleijmeer MJ, Escola JM, UytdeHaag FG et al. Antigen loading of MHC class I molecules in the endocytic tract. Traffic 2001; 2: 124–137.

    Article  CAS  Google Scholar 

  35. Pickl WF, Majdic O, Knapp W . Dendritic cell generation from highly purified CD14+ monocytes, in Robinson SP, Stagg AJ (eds). Dendritic Cell Protocols. Humana Press: NJ, 2001, pp 283–303.

    Chapter  Google Scholar 

  36. Parham P, Barnstable CJ, Bodmer WF . Use of a monoclonal antibody (W6/32) in structural studies of HLA-A, B, C, antigens. J Immunol 1979; 123: 342–349.

    CAS  PubMed  Google Scholar 

  37. Parham P, Androlewicz MJ, Holmes NJ, Rothenberg BE . Arginine 45 is a major part of the antigenic determinant of human beta 2-microglobulin recognized by mouse monoclonal antibody BBM.1. J Biol Chem 1983; 258: 6179–6186.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank G Screaton for helpful discussion. This work was supported by the Wellcome Trust. APW is a Wellcome Clinical Training Fellow.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T Elliott.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gao, B., Williams, A., Sewell, A. et al. Generation of a functional, soluble tapasin protein from an alternatively spliced mRNA. Genes Immun 5, 101–108 (2004). https://doi.org/10.1038/sj.gene.6364043

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gene.6364043

Keywords

This article is cited by

Search

Quick links