Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Full Paper
  • Published:

Genetic interactions between susceptibility loci reveal epistatic pathogenic networks in murine lupus

Abstract

Interactions between Sle1 and other susceptibility loci were required for disease development in the NZM2410 model of lupus. Sle1 corresponds to at least three subloci, Sle1a, Sle1b, and Sle1c, each of which independently causes loss of tolerance to chromatin, but displays a distinctive immune profile. We have used congenic strains to analyze the interactions between the Sle1 subloci and other lupus susceptibility loci using Y autoimmunity accelerator (Yaa) and Faslpr as sensitizing mutations. Sle1 coexpressed with either one of these single susceptibility alleles resulted in a highly penetrant nephritis, splenomegaly, production of nephrophilic antibodies, and increased expression of B- and T-cell activation markers. Here, we show that only Sle1b interacted with Yaa to produce these phenotypes, suggesting that Sle1b and Yaa belong to the same functional pathway. Interactions between the three Sle1 loci and lpr resulted in lymphocyte activation and lupus nephritis, but a significant mortality was observed only for the Sle1a.lpr combination. This suggests a major role for the FAS pathway in keeping in check the loss of tolerance mediated by the Sle1 loci, especially for Sle1a. Our results illustrate the complexity of interactions between susceptibility loci in polygenic diseases such as lupus and may explain the clinical heterogeneity of the disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Wakeland EK, Liu K, Graham RR, Behrens TW . Delineating the genetic basis of systemic lupus erythematosus. Immunity 2001; 15: 397–408.

    Article  CAS  Google Scholar 

  2. Morel L, Mohan C, Croker BP, Tian X-H, Wakeland EK . Functional dissection of systemic lupus erythematosus using congenic mouse strains. J Immunol 1997; 158: 6019–6028.

    CAS  PubMed  Google Scholar 

  3. Morel L, Wakeland EK . Lessons from the NZM2410 model and related strains. Intern Rev Immunol 2000; 19: 423–446.

    Article  CAS  Google Scholar 

  4. Morel L, Rudofsky UH, Longmate JA, Schiffenbauer J, Wakeland EK . Polygenetic control of susceptibility to murine systemic lupus erythematosus. Immunity 1994; 1: 219–229.

    Article  CAS  Google Scholar 

  5. Mohan C, Alas E, Morel L, Yang P, Wakeland EK . Genetic dissection of SLE pathogenesis: Sle1 on murine chromosome 1 leads to a selective loss of tolerance to H2A/H2B/DNA subnucleosomes. J Clin Invest 1998; 101: 1362–1372.

    Article  CAS  Google Scholar 

  6. Morel L, Croker BP, Blenman KR et al. Genetic reconstitution of systemic lupus erythematosus immunopathology with polycongenic murine strains. Proc Natl Acad Sci USA 2000; 97: 6670–6675.

    Article  CAS  Google Scholar 

  7. Morel L, Blenman KR, Croker BP, Wakeland EK . The major murine SLE-susceptibility locus, Sle1, is a cluster of functionally related genes. Proc Natl Acad Sci USA 2000; 98: 1787–1792.

    Article  Google Scholar 

  8. Sobel ES, Satoh M, Chen Y, Wakeland EK, Morel L . The major murine systemic lupus erythematosus susceptibility locus Sle1 results in abnormal functions of both B and T cells. J Immunol 2002; 169: 2694–2700.

    Article  CAS  Google Scholar 

  9. Boackle SA, Holers VM, Chen X et al. Cr2, a candidate gene in the murine Sle1c lupus susceptibility locus, encodes a dysfunctional protein. Immunity 2001; 15: 775–785.

    Article  CAS  Google Scholar 

  10. Wandstrat AE, Nguyen C, Limaye N et al. The CD150/CD2 gene cluster mediates susceptibility to murine lupus Fareb J. 2002; 16: A323.

  11. Korstanje R, Paigen B . From QTL to gene: the harvest begins. Nat Genet 2002; 31: 235–236.

    Article  CAS  Google Scholar 

  12. Glazier AM, Nadeau JH, Aitman TJ . Finding genes that underlie complex traits. Science 2002; 298: 2345–2349.

    Article  CAS  Google Scholar 

  13. Morahan G, Morel L . Genetics of autoimmunity in patients and animal models. Curr Opin Immunol 2002; 14: 803–811.

    Article  CAS  Google Scholar 

  14. Frankel WN, Schork NJ . Who's afraid of epistasis? Nat Genet 1996; 14: 371–373.

    Article  CAS  Google Scholar 

  15. Cornall RJ, Cyster JG, Hibbs ML et al. Polygenic autoimmune traits: Lyn, CD22, and SHP-1 are limiting elements of a biochemical pathway regulating BCR signaling and selection. Immunity 1998; 8: 497–508.

    Article  CAS  Google Scholar 

  16. Shih DQ, Heimesaat M, Kuwajima S, Stein R, Wright CV, Stoffel M . Profound defects in pancreatic beta-cell function in mice with combined heterozygous mutations in Pdx-1, Hnf-1alpha, and Hnf-3beta. Proc Natl Acad Sci USA 2002; 99: 3818–3823.

    Article  CAS  Google Scholar 

  17. Mohan C, Morel L, Yang P, Wakeland EK . Genetic dissection of SLE pathogenesis: Sle2 on murine chromosome 4 leads to B-cell hyperactivity. J Immunol 1997; 159: 454–465.

    CAS  PubMed  Google Scholar 

  18. Mohan C, Yu Y, Morel L, Yang P, Wakeland EK . Genetic dissection of SLE pathogenesis: Sle3/Sle5 on murine chromosome 7 impact T cell activation, differentiation and cell death. J Immunol 1999; 162: 6492–6502.

    CAS  PubMed  Google Scholar 

  19. Mohan C, Morel L, Yang P et al. Genetic dissection of lupus pathogenesis: a recipe for nephrophilic autoantibodies. J Clin Invest 1999; 103: 1685–1695.

    Article  CAS  Google Scholar 

  20. Bolland S, Yim YS, Tus K, Wakeland EK, Ravetch JV . Genetic modifiers of systemic lupus erythematosus in FcgammaRIIB(−/−) mice. J Exp Med 2002; 195: 1167–1174.

    Article  CAS  Google Scholar 

  21. Shi X, Xie C, Kreska D, Richardson JA, Mohan C . Genetic dissection of SLE: Sle1 and FAS impact alternate pathways leading to lymphoproliferative autoimmunity. J Exp Med 2002; 196: 281–292.

    Article  CAS  Google Scholar 

  22. Morel L, Tian XH, Croker BP, Wakeland EK . Epistatic modifiers of autoimmunity in a murine model of lupus nephritis. Immunity 1999; 11: 131–139.

    Article  CAS  Google Scholar 

  23. Cohen PL, Eisenberg RA . Lpr and gld: single gene models of systemic autoimmunity and lymphoproliferative disease. Annu Rev Immunol 1991; 9: 243–269.

    Article  CAS  Google Scholar 

  24. Izui S, Iwamoto M, Fossati L, Merino R, Takahashi S, Ibnou-Zekri N . The Yaa gene model of systemic lupus erythematosus. Immunol Rev 1995; 144: 137–156.

    Article  CAS  Google Scholar 

  25. Matin A, Nadeau JH . Sensitized polygenic trait analysis. Trends Genet 2001; 17: 727–731.

    Article  CAS  Google Scholar 

  26. Gilkeson GS . Glomerular binding antibodies in SLE. In: Kammer GM, Tsokos GC (eds). Lupus: Molecular and Cellular Pathogenesis. Humana Press: Totowa, NJ, 1999 pp. 448–470.

    Chapter  Google Scholar 

  27. Fossati L, Iwamoto M, Merino R, Izui S . Selective enhancing effect of the Yaa gene on immune response against self and foreign antigens. Eur J Immunol 1995; 25: 166–173.

    Article  CAS  Google Scholar 

  28. Wofsy D, Kerger CE, Seaman WE . Monocytosis in the BXSB model for systemic lupus erythematosus. J Exp Med 1984; 159: 629–634.

    Article  CAS  Google Scholar 

  29. Hardy RR, Hayakawa K . B cell development pathways. Annu Rev Immunol 2001; 19: 595–621.

    Article  CAS  Google Scholar 

  30. Merino R, Fossati L, Lacour M, Izui S . Selective autoantibody production by Yaa+ B cells in autoimmune Yaa(+)–Yaa− bone marrow chimeric mice. J Exp Med 1991; 174: 1023–1029.

    Article  CAS  Google Scholar 

  31. Fossati L, Sobel ES, Iwamoto M, Cohen PL, Eisenberg RA, Izui S . The Yaa gene-mediated acceleration of murine lupus: Yaa− T cells from non-autoimmune mice collaborate with Yaa+ B cells to produce lupus autoantibodies in vivo. Eur J Immunol 1995; 25: 3412–3417.

    Article  CAS  Google Scholar 

  32. Clynes R, Dumitru C, Ravetch JV . Uncoupling of immune complex formation and kidney damage in autoimmune glomerulonephritis. Science 1998; 279: 1052–1054.

    Article  CAS  Google Scholar 

  33. Watanabe H, Garnier G, Circolo A et al. Modulation of renal disease in MRL/lpr mice genetically deficient in the alternative complement pathway factor B. J Immunol 2000; 164: 786–794.

    Article  CAS  Google Scholar 

  34. Vieten G, Hadam MR, De Boer H, Olp A, Fricke M, Hartung K . Expanded macrophage precursor populations in BXSB mice: possible reason for the increasing monocytosis in male mice. Clin Immunol Immunopathol 1992; 65: 212–218.

    Article  CAS  Google Scholar 

  35. Prodeus AP, Goerg S, Shen LM et al. A critical role for complement in maintenance of self-tolerance. Immunity 1998; 9: 721–731.

    Article  CAS  Google Scholar 

  36. Risch N, Ghosh S, Todd JA . Statistical evaluation of multiple-locus linkage data in experimental species and its relevance to human studies: application to nonobese diabetic (NOD) mouse and human insulin-dependent diabetes mellitus (IDDM). Am J Hum Genet 1993; 53: 702–714.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Cordell HJ, Todd JA, Hill NJ et al. Statistical modeling of interlocus interactions in a complex disease: rejection of the multiplicative model of epistasis in type 1 diabetes. Genetics 2001; 158: 357–367.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Morel L, Yu Y, Blenman KR, Caldwell RA, Wakeland EK . Production of congenic mouse strains carrying SLE-susceptibility genes derived from the SLE-prone NZM/Aeg2410 strain. Mamm Genome 1996; 7: 335–339.

    Article  CAS  Google Scholar 

  39. Bernstein KA, Valerio RD, Lefkowith JB . Glomerular binding activity in MRL lpr serum consists of antibodies that bind to a DNA/histone/type IV collagen complex. J Immunol 1995; 154: 2424.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Elisabeth Basco, Patrick Basco, Guangling Huang, and Keow Thavadahara for excellent technical help, and Eric Sobel and Kim Blenman for valuable discussions. This work was supported by a grant from the NIH (AI-54050) to L Morel and a VA Merit Review grant to G Gilkeson.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L Morel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Croker, B., Gilkeson, G. & Morel, L. Genetic interactions between susceptibility loci reveal epistatic pathogenic networks in murine lupus. Genes Immun 4, 575–585 (2003). https://doi.org/10.1038/sj.gene.6364028

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gene.6364028

Keywords

This article is cited by

Search

Quick links