Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Full Paper
  • Published:

Pharmacogenomic analysis of interferon receptor polymorphisms in multiple sclerosis

Abstract

Multiple sclerosis (MS) is a common inflammatory disease of the central nervous system characterized by progressive neurological dysfunction. No curative therapy is currently available, and approximately 80–90% of afflicted individuals are ultimately disabled. Interferon beta (IFNβ) has been shown to decrease clinical relapses, reduce brain disease activity, and possibly slow progression of disability. However, the overall effect of treatment is partial and a substantial number of patients are considered poor or nonresponders. For this report, we tested the pharmacogenomic effects of eight polymorphisms in the interferon receptor genes (IFNAR1 and IFNAR2) in a group of 147 patients undergoing open-label IFNβ therapy. Overall, no significant differences in the distribution of responders and nonresponders, classified based on prospectively acquired primary and secondary clinical end points, were observed when stratified by any of the studied IFNAR gene polymorphisms. A trend detected with a single nucleotide polymorphism SNP 16469 (A/T) located at the third intron of the IFNAR1 gene, suggesting modest association with relapse-free status, will require confirmation in an independent data set. In addition, no significant association was observed of any of the IFNAR gene polymorphisms with susceptibility to MS, as studied by a family-based association analysis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Oksenberg JR, Baranzini SE, Barcellos LF, Hauser SL . Multiple sclerosis: genomic rewards. J Neuroimmunol 2001; 113: 171–184.

    Article  CAS  Google Scholar 

  2. Jacobs L, O'Malley J, Freeman A, Ekes R . Intrathecal interferon reduces exacerbations of multiple sclerosis. Science 1981; 214: 1026–1028.

    Article  CAS  Google Scholar 

  3. Jacobs L, Salazar AM, Herndon R et al. Multicentre double-blind study of effect of intrathecally administered natural human fibroblast interferon on exacerbations of multiple sclerosis. Lancet 1986; 2: 1411–1413.

    Article  CAS  Google Scholar 

  4. Chofflon M . Recombinant human interferon beta in relapsing–remitting multiple sclerosis: a review of the major clinical trials. Eur J Neurol 2000; 7: 369–380.

    Article  CAS  Google Scholar 

  5. Roden DM, George AL Jr . The genetic basis of variability in drug responses. Nat Rev/Drug Discovery 2002; 1: 37–44.

    Article  CAS  Google Scholar 

  6. Martinez FD, Graves PE, Baldini M, Solomon S, Erickson R . Association between genetic polymorphisms of the beta2-adrenoceptor and response to albuterol in children with and without a history of wheezing. J Clin Invest 1997; 100: 3184–3188.

    Article  CAS  Google Scholar 

  7. Arranz MJ, Munro J, Birkett J et al. Pharmacogenetic prediction of clozapine response. Lancet 2000; 355: 1615–1616.

    Article  CAS  Google Scholar 

  8. Henrion D, Amant C, Benessiano J et al. Angiotensin II type 1 receptor gene polymorphism is associated with an increased vascular reactivity in the human mammary artery in vitro. J Vasc Res 1998; 35: 356–362.

    Article  CAS  Google Scholar 

  9. Novick D, Cohen B, Rubinstein M . The human interferon alpha/beta receptor: characterization and molecular cloning. Cell 1994; 77: 391–400.

    Article  CAS  Google Scholar 

  10. Villoslada P, Barcellos LF, Rio J et al. The HLA locus and multiple sclerosis in Spain. Role in disease susceptibility, clinical course and response to interferon beta. J Neuroimmunol 2002; 130: 194–201.

    Article  CAS  Google Scholar 

  11. Mogensen KE, Lewerenz M, Reboul J, Lutfalla G, Uze G . The type I interferon receptor: structure, function, and evolution of a family business. J Interferon Cytokine Res 1999; 19: 1069–1098.

    Article  CAS  Google Scholar 

  12. Lutfalla G, Gardiner K, Proudhon D, Vielh E, Uze G . The structure of the human interferon alpha/beta receptor gene. J Biol Chem 1992; 267: 2802–2809.

    CAS  PubMed  Google Scholar 

  13. Reboul J, Mertens C, Levillayer F et al. Cytokines in genetic susceptibility to multiple sclerosis: a candidate gene approach. J Neuroimmunol 2000; 102: 107–112.

    Article  CAS  Google Scholar 

  14. Polman CH, Herndon RM, Pozzilli C . Interferons. In: Rudick RA, Goodkin DE (ed). Multiple Sclerosis Therapeutics. Martin Dunitz: London, 1999, pp 243–276.

    Google Scholar 

  15. Noseworthy JH, Gold R, Hartung HP . Treatment of multiple sclerosis: recent trials and future perspectives. Curr Opin Neurol 1999; 12: 279–293.

    Article  CAS  Google Scholar 

  16. Yong VW, Chabot S, Stuve O, Williams G . Interferon beta in the treatment of multiple sclerosis: mechanisms of action. Neurology 1998; 51: 682–689.

    Article  CAS  Google Scholar 

  17. Karp CL, van Boxel-Dezaire AH, Byrnes AA, Nagelkerken L . Interferon-beta in multiple sclerosis: altering the balance of interleukin-12 and interleukin-10? Curr Opin Neurol 2001; 14: 361–368.

    Article  CAS  Google Scholar 

  18. Furlan R, Bergami A, Lang R et al. Interferon-beta treatment in multiple sclerosis patients decreases the number of circulating T cells producing interferon-gamma and interleukin-4. J Neuroimmunol 2000; 111: 86–92.

    Article  CAS  Google Scholar 

  19. Gayo A, Mozo L, Suarez A, Tunon A, Lahoz C, Gutierrez C . Long-term effect of IFNbeta1b treatment on the spontaneous and induced expression of IL-10 and TGFbeta1 in MS patients. J Neurol Sci 2000; 179: 43–49.

    Article  CAS  Google Scholar 

  20. Iarlori C, Reale M, Lugaresi A et al. RANTES production and expression is reduced in relapsing–remitting multiple sclerosis patients treated with interferon-beta-1b. J Neuroimmunol 2000; 107: 100–107.

    Article  CAS  Google Scholar 

  21. Ossege LM, Sindern E, Patzold T, Malin JP . Immunomodulatory effects of interferon-beta-1b in vivo: induction of the expression of transforming growth factor-beta1 and its receptor type II. J Neuroimmunol 1998; 91: 73–81.

    Article  CAS  Google Scholar 

  22. van Boxel-Dezaire AH, van Trigt-Hoff SC, Killestein J et al. Contrasting responses to interferon beta-1b treatment in relapsing–remitting multiple sclerosis: does baseline interleukin-12p35 messenger RNA predict the efficacy of treatment? Ann Neurol 2000; 48: 313–322.

    Article  CAS  Google Scholar 

  23. Feng X, Petraglia A, Chen M, Byskosh P, Boos M, Reder A . Low expression of interferon-stimulated genes in active multiple sclerosis is linked to subnormal phosphorylation of STAT1. J Neuroimmunol 2002; 129: 205–215.

    Article  CAS  Google Scholar 

  24. de Las Heras V, Rafael A, Martinez A, Rubio A, de la Concha EG . IL10 gene and response to IFN beta in MS. Multiple Sclerosis 2002; 8 (Suppl 1): S122 (Abstr. P324).

    Google Scholar 

  25. Poser CM, Paty DW, Scheinberg L et al. New diagnostic criteria for multiple sclerosis: guidelines for research protocols. Ann Neurol 1983; 13: 227–231.

    Article  CAS  Google Scholar 

  26. Goodkin DE, Doolittle TH, Hauser SS, Ransohoff RM, Roses AD, Rudick RA . Diagnostic criteria for multiple sclerosis research involving multiply affected families. Arch Neurol 1991; 48: 805–807.

    Article  CAS  Google Scholar 

  27. Muldoon J, Uriel A, Khoo S, Ollier WE, Hajeer AH . Novel IFN-alpha receptor promoter polymorphisms. Genes Immun 2001; 2: 159–160.

    Article  CAS  Google Scholar 

  28. McInnis MG, Lutfalla G, Slaugenhaupt S et al. Linkage mapping of highly informative DNA polymorphisms within the human interferon-alpha receptor gene on chromosome 21. Genomics 1991; 11: 573–576.

    Article  CAS  Google Scholar 

  29. Germer S, Higuchi R . Single-tube genotyping without oligonucleotide probes. Genome Res 1999; 9: 72–78.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Martin ER, Monks SA, Warren LL, Kaplan NL . A test for linkage and association in general pedigrees: the pedigree disequilibrium test. Am J Hum Genet 2000; 67: 146–154.

    Article  CAS  Google Scholar 

  31. Clayton D, Jones H . Transmission/disequilibrium tests for extended marker haplotypes. Am J Hum Genet 1999; 65: 1161–1169.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the MS patients and their families for making this study possible. This work was funded by the National Multiple Sclerosis Society grants RG3060 and RG2901 (JRO), NIH-AI42911-01A1 (JRO), the Generalitat de Catalunya AGP-99-01 and Fundacion Esclerosis Multiple (XM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J R Oksenberg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sriram, U., Barcellos, L., Villoslada, P. et al. Pharmacogenomic analysis of interferon receptor polymorphisms in multiple sclerosis. Genes Immun 4, 147–152 (2003). https://doi.org/10.1038/sj.gene.6363946

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gene.6363946

Keywords

This article is cited by

Search

Quick links