Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Full Paper
  • Published:

Polymorphisms of human CD19 gene: possible association with susceptibility to systemic lupus erythematosus in Japanese

Abstract

CD19 regulates the signaling for B lymphocyte development, activation and proliferation. In mice, CD19 deficiency and overexpression were shown to result in hypogammaglobulinemia and autoantibody production, respectively. In the present study, we screened for the polymorphisms of CD19 , and examined the detected polymorphisms for the association with rheumatoid arthritis (RA), Crohn’s disease and systemic lupus erythematosus (SLE). Two SNPs, c.705G>T (P235P and IVS14-30C>T, were decreased (P = 0.0096 and P = 0.028, respectively), in SLE. A GT repeat polymorphism, c.*132(GT)12–18, was detected within the 3’-untranslated region, and individuals with 15 times repeat was significantly increased in the independent two groups of Japanese SLE patients (P = 0.011 and P = 0.035, respectively); the overall difference between total SLE and controls was striking (P = 0.0061). No association was observed for RA and Crohn’s disease. In addition, no variations other than the common polymorphisms were detected in four patients with common variable immunodeficiency, the phenotype of which resembles CD19 deficient mice. In Caucasian SLE families, this GT repeat polymorphism was rare. CD19 mRNA level in the isolated peripheral blood B lymphocytes was lower in individuals possessing (GT)15–18 alleles compared with those without these alleles, both in controls and in SLE patients; however, the difference did not reach statistical significance. These results suggested that either the slight reduction in the CD19 mRNA level associated with the elongation of GT repeat, or an allele of another locus in linkage disquilibrium with CD19 (GT)15–18, may be associated with susceptibility to SLE in Japanese.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Nadler LM, Anderson KC, Marti G et al. B4, a human B lymphocyte-associated antigen expressed on normal, mitogen-activated, and malignant B lymphocytes J Immunol 1983 131: 244–250

    CAS  PubMed  Google Scholar 

  2. Tedder TF, Isaacs CM . Isolation of cDNAs encoding the CD19 antigen of human and mouse B lymphocytes. A new member of the immunoglobulin superfamily J Immunol 1989 143: 712–717

    CAS  PubMed  Google Scholar 

  3. Zhou LJ, Ord DC, Hughes AL, Tedder TF . Structure and domain organization of the CD19 antigen of human, mouse, and guinea pig B lymphocytes. Conservation of the extensive cytoplasmic domain J Immunol 1991 147: 1424–1432

    CAS  PubMed  Google Scholar 

  4. Matsumoto AK, Kopicky-Burd J, Carter RH, Tuveson DA, Tedder TF, Fearon DT . Intersection of the complement and immune systems: a signal transduction complex of the B lymphocyte-containing complement receptor type 2 and CD19 J Exp Med 1991 173: 55–64

    Article  CAS  Google Scholar 

  5. Bradbury LE, Kansas GS, Levy S, Evans RL, Tedder TF . The CD19/CD21 signal transducing complex of human B lymphocytes includes the target of antiproliferative antibody-1 and Leu-13 molecules J Immunol 1992 149: 2841–2850

    CAS  PubMed  Google Scholar 

  6. Iida K, Nadler L, Nussenzweig V . Identification of the membrane receptor for the complement fragment C3d by means of a monoclonal antibody J Exp Med 1983 158: 1021–1033

    Article  CAS  Google Scholar 

  7. Weis JJ, Tedder TF, Fearon DT . Identification of a 145,000 Mr membrane protein as the C3d receptor (CR2) of human B lymphocytes Proc Natl Acad Sci USA 1984 81: 881–885

    Article  CAS  Google Scholar 

  8. Hasegawa M, Fujimoto M, Poe JC, Steeber DA, Tedder TF . CD19 can regulate B lymphocyte signal transduction independent of complement activation J Immunol 2001 167: 3190–3200

    Article  CAS  Google Scholar 

  9. de Fougerolles AR, Batista F, Johnsson E, Fearon DT . IgM and stromal cell-associated heparan sulfate/heparin as complement-independant ligands for CD19 Eur J Immunol 2001 31: 2189–2199

    Article  CAS  Google Scholar 

  10. Uckun FM, Burkhardt AL, Jarvis L et al. Signal transduction through the CD19 receptor during discrete developmental stages of human B-cell ontogeny J Biol Chem 1993 268: 21172–21184

    CAS  PubMed  Google Scholar 

  11. Kitanaka A, Ito C, Coustan-Smith E, Campana D . CD38 ligation in human B cell progenitors triggers tyrosine phosphorylation of CD19 and association of CD19 with lyn and phosphatidylinositol 3-kinase J Immunol 1997 159: 184–192

    CAS  PubMed  Google Scholar 

  12. Xiao J, Messinger Y, Jin J, Myers DE, Bolen JB, Uckun FM . Signal transduction through the β1 integrin family surface adhesion molecules VLA-4 and VLA-5 of human B-cell precursors activates CD19 receptor-associated protein-tyrosine kinases J Biol Chem 1996 271: 7659–7664

    Article  CAS  Google Scholar 

  13. Hippen KL, Buhl AM, D’Ambrosio D, Nakamura K, Persin C, Cambier JC . FcγRIIB1 inhibition of BCR-mediated phosphoinositide hydrolysis and Ca2+mobilization is integrated by CD19 dephosphorylation Immunity 1997 7: 49–58

    Article  CAS  Google Scholar 

  14. Kiener PA, Lioubin MN, Rohrschneider LR, Ledbetter JA, Nadler SG, Diegel ML . Co-ligation of the antigen and Fc receptors gives rise to the selective modulation of intracellular signaling in B cells. Regulation of the association of phosphatidylinositol 3-kinase and inositol 5’-phosphatase with the antigen receptor complex J Biol Chem 1997 272: 3838–3844

    Article  CAS  Google Scholar 

  15. Engel P, Zhou LJ, Ord DC, Sato S, Koller B, Tedder TF . Abnormal B lymphocyte development, activation, and differentiation in mice that lack or overexpress the CD19 signal transduction molecule Immunity 1995 3: 39–50

    Article  CAS  Google Scholar 

  16. Rickert RC, Rajewsky K, Roes J . Impairment of T-cell-dependent B-cell responses and B-1 cell development in CD19-deficient mice Nature 1995 376: 352–355

    Article  CAS  Google Scholar 

  17. Sato S, Steeber DA, Tedder TF . The CD19 signal transduction molecule is a response regulator of B-lymphocyte differentiation Proc Natl Acad Sci USA 1995 92: 11558–11562

    Article  CAS  Google Scholar 

  18. Sato S, Ono N, Steeber DA, Pisetsky DS, Tedder TF . CD19 regulates B lymphocyte signaling thresholds critical for the development of B-1 lineage cells and autoimmunity J Immunol 1996 157: 4371–4378

    CAS  PubMed  Google Scholar 

  19. Sato S, Miller AS, Howard MC, Tedder TF . Regulation of B lymphocyte development and activation by the CD19/ CD21/CD81/Leu 13 complex requires the cytoplasmic domain of CD19 J Immunol 1997 159: 3278–3287

    CAS  PubMed  Google Scholar 

  20. Sato S, Steeber DA, Jansen PJ, Tedder TF . CD19 expression levels regulate B lymphocyte development: human CD19 restores normal function in mice lacking endogenous CD19 J Immunol 1997 158: 4662–4669

    CAS  PubMed  Google Scholar 

  21. Fehr T, Rickert RC, Odermatt B et al. Antiviral protection and germinal center formation, but impaired B cell memory in the absence of CD19 J Exp Med 1998 188: 145–155

    Article  CAS  Google Scholar 

  22. Zhou LJ, Smith HM, Waldschmidt TJ, Schwarting R, Daley J, Tedder TF . Tissue-specific expression of the human CD19 gene in transgenic mice inhibits antigen-independent B-lymphocyte development Mol Cell Biol 1994 14: 3884–3894

    Article  CAS  Google Scholar 

  23. Inaoki M, Sato S, Weintraub BC, Goodnow CC, Tedder TF . CD19-regulated signaling thresholds control peripheral tolerance and autoantibody production in B lymphocytes J Exp Med 1997 186: 1923–1931

    Article  CAS  Google Scholar 

  24. Fujimoto M, Poe JC, Inaoki M, Tedder TF . CD19 regulates B lymphocyte responses to transmembrane signals Semin Immunol 1998 10: 267–277

    Article  CAS  Google Scholar 

  25. Tuveson DA, Carter RH, Soltoff SP, Fearon DT . CD19 of B cells as a surrogate kinase insert region to bind phosphatidylinositol 3-kinase Science 1993 260: 986–989

    Article  CAS  Google Scholar 

  26. Hugot JP, Laurent-Puig P, Gower-Rousseau C et al. Mapping of a susceptibility locus for Crohn’s disease on chromosome 16 Nature 1996 379: 821–823

    Article  CAS  Google Scholar 

  27. Cornélis F, Fauré S, Martinez M et al. New susceptibility locus for rheumatoid arthritis suggested by a genome-wide linkage study Proc Natl Acad Sci USA 1998 95: 10746–10750

    Article  Google Scholar 

  28. Hugot JP, Chamaillard M, Zouali H et al. Asociation of NOD2 leucine-rich repeat variants with susceptibility to Crohn’s disease Nature 2001 411: 599–603

    Article  CAS  Google Scholar 

  29. Ogura Y, Bonen DK, Inohara N et al. A frameshift mutation in NOD2 associated with susceptibility to Crohn’s disease Nature 2001 411: 603–606

    Article  CAS  Google Scholar 

  30. Klinman DM . B-cell abnormalities characteristic of systemic lupus erythematosus. In: Wallace DJ, Hahn BH (eds) Dubois’ Lupus Erythematosus (5th edn) Williams & Wilkins: Baltimore 1997 195–206

    Google Scholar 

  31. Sato S, Hasegawa M, Fujimoto M, Tedder TF, Takehara K . Quantitative genetic variation in CD19 expression correlates with autoimmunity J Immunol 2000 165: 6635–6643

    Article  CAS  Google Scholar 

  32. Dunnen JT, Antonarakis SE . Mutation nomenclature extensions and suggestions to describe complex mutations: a discussion Hum Mutat 2000 15: 7–12

    Article  Google Scholar 

  33. Nomenclature for the description of sequence variations (http://www.dmd.nl/mutnomen.html)

  34. McCracken S, Fong N, Yankulov K et al. The C-terminal domain of RNA polymerase II couples mRNA processing to transcription Nature 1997 385: 357–361

    Article  CAS  Google Scholar 

  35. Conne B, Stutz A, Vassalli JD . The 3´ untranslated region of messenger RNA: A molecular ‘hotspot’ for pathology? Nat Med 2000 6: 637–641

    Article  CAS  Google Scholar 

  36. D’Alfonso S, Rampi M, Bocchio D, Colombo G, Scorza-Smeraldi R, Momigliano-Richardi P . Systemic lupus erythematosus candidate genes in the Italian population: evidence for a significant association with interleukin-10 Arthritis Rheum 2000 43: 120–128

    Article  Google Scholar 

  37. Gaffney PM, Kearns GM, Shark KB et al. A genome-wide search for susceptibility genes in human systemic lupus erythematosus sib-pair families Proc Natl Acad Sci USA 1998 95: 14875–14879

    Article  CAS  Google Scholar 

  38. Moser KL, Neas BR, Salmon JE et al. Genome scan of human systemic lupus erythematosus: evidence for linkage on chromosome 1q in African-American pedigrees Proc Natl Acad Sci USA 1998 95: 14869–14874

    Article  CAS  Google Scholar 

  39. Moser KL, Gray-McGuire C, Kelly J et al. Confirmation of genetic linkage between human systemic lupus erythematosus and chromosome 1q41 Arthritis Rheum 1999 42: 1902–1907

    Article  CAS  Google Scholar 

  40. Gaffney PM, Ortmann WA, Selby SA et al. Genome screening in human systemic lupus erythematosus: results from a second Minnesota cohort and combined analyses of 187 sib-pair families Am J Hum Genet 2000 66: 547–556

    Article  CAS  Google Scholar 

  41. Gray-McGuire C, Moser KL, Gaffney PM et al. Genome scan of human systemic lupus erythematosus by regression modeling: evidence of linkage and epistasis at 4p16-15.2 Am J Hum Genet 2000 67: 1460–1469

    Article  CAS  Google Scholar 

  42. Lindqvist AK, Steinsson K, Johanneson B et al. A susceptibility locus for human systemic lupus erythematosus (hSLE1) on chromosome 2q J Autoimmun 2000 14: 169–178

    Article  CAS  Google Scholar 

  43. Shai R, Quismorio FP, Li L et al. Genome-wide screen for systemic lupus erythematosus susceptibility genes in multiplex families Hum Mol Genet 1999 8: 639–644

    Article  CAS  Google Scholar 

  44. Tedder TF, Inaoki M, Sato S . The CD19-CD21 complex regulates signal transduction thresholds governing humoral immunity and autoimmunity Immunity 1997 6: 107–118

    Article  CAS  Google Scholar 

  45. Tokunaga K, Imanishi T, Takahashi K, Juji T . On the origin and disoersal of East Asian populations as viewed from HLA haplotypes. In: Akazawa T, Szathmary EJ (eds) Prehistoric Mongoloid Dispersals Oxford University Press: Oxford 1996 187–197

    Google Scholar 

  46. Qian Y, Santiago C, Borrero M, Tedder TF, Clarke SH . Lupus-specific antiribonucleoprotein B cell tolerance in nonautoimmune mice is maintained by differentiation to B-1 and governed by B cell receptor signaling thresholds J Immunol 2001 166: 2412–2419

    Article  CAS  Google Scholar 

  47. Hashimoto H, Nishimura Y, Dong RP et al. HLA antigens in Japanese patients with systemic lupus erythematosus Scand J Rheumatol 1994 23: 191–196

    Article  CAS  Google Scholar 

  48. Tsuchiya N, Kawasaki A, Tsao BP, Komata T, Grossman JM, Tokunaga K . Analysis of the association of HLA-DRB1 and TNFA promoter polymorphisms with SLE using transmission disequilibrium test Genes Immun 2001 2: 317–322

    Article  CAS  Google Scholar 

  49. Komata T, Tsuchiya N, Matsushita M, Hagiwara K, Tokunaga K . Association of tumor necrosis factor receptor 2 (TNFR2) polymorphism with susceptibility to systemic lupus erythematosus Tissue Antigens 1999 53: 527–533

    Article  CAS  Google Scholar 

  50. Kyogoku C, Dijstelbloem HM, Tsuchiya N et al. Association of Fcγ receptor gene polymorphisms in Japanese patients with systemic lupus erythematosus: Contribution of FCGR2Bto the genetic susceptibility to SLE Arthritis Rheum 2002 46: 1242–1254

    Article  CAS  Google Scholar 

  51. Hatta Y, Tsuchiya N, Matsushita M, Shiota M, Hagiwara K, Tokunaga K . Identification of the gene variations in human CD22 Immunogenetics 1999 49: 280–286

    Article  CAS  Google Scholar 

  52. Kozmik Z, Wang S, Dorfler P, Adams B, Busslinger M . The promoter of the CD19 gene is a target for the B-cell-specific transcription factor BSAP Mol Cell Biol 1992 12: 2662–2672

    Article  CAS  Google Scholar 

  53. Arnett FC, Edworthy SM, Bloch DA et al. The American Rheumatism Association 1987 revised criteria for the classification of rheumatoid arthritis Arthritis Rheum 1988 31: 315–324

    Article  CAS  Google Scholar 

  54. Tan EM, Cohen AS, Fries JF et al. The 1982 revised criteria for the classification of systemic lupus erythematosus Arthritis Rheum 1982 25: 1271–1277

    Article  CAS  Google Scholar 

  55. Tsuchiya N, Shiota M, Moriyama S et al. MICA allele typing of HLA-B27 positive Japanese patients with seronegative spondylarthropathies and healthy individuals: differential linkage disequilibrium with HLA-B27 subtypes Arthritis Rheum 1998 41: 68–73

    Article  CAS  Google Scholar 

  56. Bannai M, Tokunaga K, Lin L et al. Discrimination of human HLA-DRB1 alleles by PCR-SSCP (single-strand conformation polymorphism) method Eur J Immunogenet 1994 21: 1–9

    Article  CAS  Google Scholar 

  57. Spielman RS, McGinnis RE, Ewens WJ . Transmission test for linkage disequilibrium: the insulin gene region and insulin-dependent diabetes mellitus (IDDM) Am J Hum Genet 1993 52: 506–516

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Terwilliger JD, Ott J . Handbook of Human Linkage Analysis Johns Hopkins University Press: Baltimore 1994 pp 188–193

    Google Scholar 

  59. Imanishi T, Akaza T, Kimura A, Tokunaga K, Gojobori T . Estimation of allele and haplotype frequencies for HLA and complement loci In: Tsuji K, Aizawa M, Sasazuk T (eds) HLA 1991 Vol. 1 Oxford University Press: Oxford 1992 pp 76–79

    Google Scholar 

Download references

Acknowledgements

The authors are indebted to Dr Shinichi Sato and Dr Makoto Inaoki (Department of Dermatology, Kanazawa University), Dr Manabu Fujimoto (International Medical Center of Japan), Mr Satoshi Makino and Mr Koichi Okamoto (Department of Genetic Information, Tokai University) for helpful discussions, to Dr Jun Ohashi (Department of Human Genetics, The University of Tokyo) for statistical analysis, to Dr Nelson Tsuno (Department of Transfusion Medicine, The University of Tokyo), Michiko Shiota, Tae Komata, Minae Kawashima, Aya Kawasaki and Chieko Kyogoku (Department of Human Genetics, The University of Tokyo) for helpful assistance and discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N Tsuchiya.

Additional information

This study was supported by Grant-in-Aid for Scientific Research on Priority Areas (C), Grants-in-Aid for Scientific Research (B) from the Ministry of Education, Culture, Sports, Science and Technology, and a grant from the Ministry of Health, Labour and Welfare. New polymorphisms described in this study have been deposited in GenBank/ EMBL/ DDBJ accession No. AB052799, AB052814, AB052815, AB052816, AB052817 and AB052818.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuroki, K., Tsuchiya, N., Tsao, B. et al. Polymorphisms of human CD19 gene: possible association with susceptibility to systemic lupus erythematosus in Japanese. Genes Immun 3 (Suppl 1), S21–S30 (2002). https://doi.org/10.1038/sj.gene.6363906

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gene.6363906

Keywords

This article is cited by

Search

Quick links