Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Genetics of type 1 diabetes mellitus

Abstract

At least 20 different chromosomal regions have been linked to type 1 diabetes (T1D) susceptibility in humans, using genome screening, candidate gene testing, and studies of human homologues of mouse susceptibility genes. The largest contribution from a single locus (IDDM1) comes from several genes located in the MHC complex on chromosome 6p21.3, accounting for at least 40% of the familial aggregation of this disease. Approximately 30% of T1D patients are heterozygous for HLA-DQA1*0501–DQB1*0201/DQA1*0301–DQB1*0302 alleles (formerly referred to as HLA-DR3/4 and for simplification usually shortened to HLA-DQ2/DQ8), and a particular HLA-DQ6 molecule (HLA-DQA1*0102–DQB1*0602) is associated with dominant protection from the disease. There is evidence that certain residues important for structure and function of both HLA-DQ and DR peptide-binding pockets determine disease susceptibility and resistance. Independent confirmation of the IDDM2 locus on chromosome 11p15.5 has been achieved in both case-control and family-based studies, whereas associations with the other potential IDDM loci have not always been replicated. Several possibilities to explain these variable results from different studies are discussed, and a key factor affecting both linkage and association studies is that the genetic basis of T1D susceptibility may differ between ethnic groups. Some future strategies to address these problems are proposed. These include increasing the sample size in homogenous ethnic groups, high throughput genotyping and genomewide linkage disequilibrium (LD) mapping to establish disease associated ancestral haplotypes. Elucidation of the function of particular genes (‘functional genomics’) in the pathogenesis of T1D will be a most important element in future studies in this field, in addition to more sophisticated methods of statistical analyses.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

References

  1. Karvonen M, Viik-Kajander M, Moltchanova E, Libman I, LaPorte R, Tuomilehto J . Incidence of childhood type 1 diabetes worldwide Diabetes Care 2000 23: 1516–1526

    CAS  PubMed  Google Scholar 

  2. Borch-Johnsen K . The prognosis of insulin-dependent diabetes mellitus. An epidemiological approach Dan Med Bull 1989 36: 336–348

    CAS  PubMed  Google Scholar 

  3. Ng YC, Jacobs P, Johnson JA . Productivity losses associated with diabetes in the US Diabetes Care 2001 24: 257–261

    CAS  PubMed  Google Scholar 

  4. Nagamine K, Peterson P, Scott HS et al. Positional cloning of the APECED gene Nat Genet 1997 17: 393–398

    CAS  PubMed  Google Scholar 

  5. Finnish-German APECED consortium. An autoimmune disease, APECED, caused by mutations in a novel gene featuring two PHD-type zinc-finger domains. The Finnish-German APECED Consortium. Autoimmune Polyendocrinopathy-Candidiasis-Ectodermal Dystrophy Nat Genet 1997 17: 399–403

    Google Scholar 

  6. Verge CF, Vardi P, Babu S et al. Evidence for oligogenic inheritance of type 1 diabetes in a large Bedouin Arab family J Clin Invest 1998 102: 1569–1575

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Delépine M, Nicolino M, Barrett T, Golamaully M, Lathrop GM, Julier C . EIF2AK3, encoding translation initiation factor 2-alpha kinase 3, is mutated in patients with Wolcott-Rallison syndrome Nat Genet 2000 25: 406–409

    PubMed  Google Scholar 

  8. Wildin RS, Ramsdell F, Peake J et al. X-linked neonatal diabetes mellitus, enteropathy and endocrinopathy syndrome is the human equivalent of mouse scurfy Nat Genet 2001 27: 18–20

    CAS  PubMed  Google Scholar 

  9. Bennett CL, Christie J, Ramsdell F et al. The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3 Nat Genet 2001 27: 20–21

    CAS  PubMed  Google Scholar 

  10. Karvonen M, Toumilehto J, Libman I, LaPorte R WHO DIAMOND project group. A review of the recent epidemiological data on the worldwide incidence of type 1 (insulin-dependent) diabetes mellitus Diabetologia 1993 36: 883–892

    CAS  PubMed  Google Scholar 

  11. Risch N . Assessing the role of HLA-linked and unlinked determinants of disease Am J Hum Genet 1987 40: 1–14

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Singal DP, Blajchman MA . Histocompatibility (HL-A) antigens, lymphocytotoxic antibodies and tissue antibodies in patients with diabetes mellitus Diabetes 1973 22: 429–432

    CAS  PubMed  Google Scholar 

  13. Nerup J, Platz P, Andersen OO et al. HLA antigens and diabetes mellitus Lancet 1974 ii: 864–866

    Google Scholar 

  14. Thomsen M, Platz P, Andersen OO et al. MLC typing in juvenile diabetes mellitus and idiopathic Addisons disease Transpl Rev 1975 22: 125–147

    CAS  Google Scholar 

  15. Pandey JP, Zamani M, Cassiman JJ . Epistatic effects of genes encoding tumor necrosis factor-alpha, immunoglobulin allotypes, and HLA antigens on susceptibility to non-insulin-dependent (type 2) diabetes mellitus Immunogenetics 1999 49: 860–864

    CAS  PubMed  Google Scholar 

  16. Davies JL, Kawaguchi Y, Bennett ST et al. A genome-wide search for human susceptibility genes Nature 1994 371: 130–136

    CAS  PubMed  Google Scholar 

  17. Hashimoto L, Habita C, Beressi J et al. Genetic mapping of a susceptibility locus for insulin-dependent mellitus on chromosome 11q Nature 1994 371: 161–164

    CAS  PubMed  Google Scholar 

  18. Concannon P, Gogolinewens K, Hinds D et al. A second-generation screen of the human genome for susceptibility to insulin-dependent diabetes-mellitus Nat Genet 1998 19: 292–296

    CAS  PubMed  Google Scholar 

  19. Mein C, Esposito L, Dunn M et al. A search for type-1 diabetes susceptibility genes in families from the United Kingdom Nat Genet 1998 19: 297–300

    CAS  PubMed  Google Scholar 

  20. European Consortium for IDDM genome Studies. A genome-wide scan for type 1 diabetes susceptibility genes in Scandinavian families. Identification of new loci with evidence of interaction Am J Hum Genet 2001 69: 1301–1313

  21. Cox N, Wapelhurst B, Morrison A et al. Seven regions of the genome show evidence of linkage to type 1 diabetes in a consensus analysis of 767 multiplex families Am J Hum Genet 2001 69: 820–830

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Field LL, Tobias R, Magnus T . A locus on chromosome 15q26 (IDDM3) produces susceptibility to insulin-dependent diabetes mellitus Nat Genet 1994 8: 189–194

    CAS  PubMed  Google Scholar 

  23. Rowe RE, Wapelhorst B, Bell GI, Risch N, Spielman RS, Concannon P . Linkage and association between insulin-dependent diabetes mellitus (IDDM) susceptibility and markers near the glucokinase gene on chromosome 7 Nat Genet 1995 10: 240–242

    CAS  PubMed  Google Scholar 

  24. Luo D-F, Bui MM, Muir A, MacLaren NK, Thomson G, She J-X . Affected sib-pair mapping of a novel susceptibility gene to insulin-dependent diabetes mellitus (IDDM8) on chromosome 6q25–q27 Am J Hum Genet 1995 57: 911–919

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Field LL, Tobias R, Thomson G, Plon S . Susceptibility to insulin-dependent diabetes mellitus maps to a locus (IDDM11) on human chromosome 14q24.3–q31 Genomics 1996 33: 1–8

    CAS  PubMed  Google Scholar 

  26. Luo D-F, Buzzetti R, Rotter JI et al. Confirmation of three susceptibility genes to insulin-dependent diabetes mellitus: IDDM4, IDDM5 and IDDM8 Hum Mol Genet 1996 5: 693–698

    CAS  PubMed  Google Scholar 

  27. Morahan G, Huang D, Tait BD, Colman PG, Harrison LC . Markers on distal chromosome 2q linked to insulin-dependent diabetes mellitus Science 1996 272: 1811–1813

    CAS  PubMed  Google Scholar 

  28. Delépine M, Pociot F, Habita C et al. Evidence of a non-HLA susceptibility locus in type 1 diabetes linked to HLA on chromosome 6 Am J Hum Genet 1997 60: 174–187

    PubMed  PubMed Central  Google Scholar 

  29. Morahan G, Huang DX, Ymer SI et al. Linkage disequilibrium of a type 1 diabetes susceptibility locus with a regulatory IL 12B allele Nat Genet 2001 27: 218–221

    CAS  PubMed  Google Scholar 

  30. Field LL, Larsen ZM, Pociot F, Nerup J, Tobias R, Bonnevie-Nielsen V . Evidence for a locus (IDDM16) in the immunoglobin heavy chain region on chromosome 14q32.2 producing susceptibility to type 1 diabetes Genes Immun 2002 (in press)

  31. Nerup J, Mandrup-Poulsen T, Helqvist S et al. On the pathogenesis of IDDM Diabetologia 1994 37 (Suppl 2): S82–S89

    Google Scholar 

  32. Chakravarti A . Population genetics—making sense out of sequence Nat Genet 1999 21: 56–60

    CAS  PubMed  Google Scholar 

  33. Risch N, Merikangas K . The future of genetic studies of complex diseases Science 1996 273: 1516–1517

    CAS  Article  PubMed  Google Scholar 

  34. Cargill M, Altshuler D, Ireland J et al. Characterization of single-nucleotide polymorphisms in coding regions of human genes Nat Genet 1999 22: 231–238

    CAS  Article  PubMed  Google Scholar 

  35. Halushka MK, Fan JB, Bentley K et al. Patterns of single-nucleotide polymorphisms in candidate genes for blood-pressure homeostasis Nat Genet 1999 22: 239–247

    CAS  Article  PubMed  Google Scholar 

  36. Jeffreys AJ, Kauppi L, Neumann R . Intensely punctate meiotic recombination in the class II region of the major histocompatibility complex Nat Genet 2001 29: 217–222

    CAS  PubMed  Google Scholar 

  37. Rioux JD, Daly MJ, Silverberg MS et al. Genetic variation in the 5q31 cytokine gene cluster confers susceptibility to Crohn disease Nat Genet 2001 29: 223–228

    CAS  PubMed  Google Scholar 

  38. Daly MJ, Rioux JD, Schaffner SE, Hudson TJ, Lander ES . High-resolution haplotype structure in the human genome Nat Genet 2001 29: 229–232

    CAS  PubMed  Google Scholar 

  39. Johnson GCL, Esposito L, Barratt BJ et al. Haplotype tagging for the identification of common disease genes Nat Genet 2001 29: 233–237

    CAS  PubMed  Google Scholar 

  40. Altmüller J, Palmer LJ, Fischer G, Scherb H, Wjst M . Genomewide scans of complex diseases: True linkage is hard to find Am J Hum Genet 2001 69: 936–950

    PubMed  PubMed Central  Google Scholar 

  41. Noble JA, Valdes AM, Cook M, Klitz W, Thomson G, Erlich HA . The role of hla class-ii genes in insulin-dependent diabetes-mellitus—molecular analysis of 180 caucasian, multiplex families Am J Hum Genet 1996 59: 1134–1148

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Campbell RD, Trowsdale J . Map of the human MHC Immunol Today 1993 14: 349–352

    CAS  PubMed  Google Scholar 

  43. Gruen JR, Weissman SM . Evolving views of the major histocompatibility complex Blood 1997 90: 4252–4265

    CAS  PubMed  Google Scholar 

  44. Ruuls SR, Sedgwick JD . Unlinking tumor necrosis factor biology from the major histocompatibility complex: Lessons from human genetics and animal models Am J Hum Genet 1999 65: 294–301

    CAS  PubMed  PubMed Central  Google Scholar 

  45. She J-X . Susceptibility to type 1 diabetes: HLA-DQ and DR revisited Immunol Today 1996 17: 323–329

    CAS  PubMed  Google Scholar 

  46. Cucca F, Todd J . HLA susceptibility to Type 1 diabetes In: Browning M, McMichaels A (eds) HLA and MHC: genes,molecules and function BIOS Scientific Publishers Ltd; Oxford 1996 pp 383–406

    Google Scholar 

  47. Thorsby E . HLA associated diseases Hum Immunol 1997 53: 1–11

    CAS  PubMed  Google Scholar 

  48. Dorman JS, Bunken CH . HLA-DQ locus of the human leukocyte antigen complex and type 1 diabetes mellitus: a HuGE review Epidemiol Rev 2000 22: 218–227

    CAS  PubMed  Google Scholar 

  49. Undlien DE, Lie BA, Thorsby E . HLA complex genes in type 1 diabetes and other autoimmune diseases Which genes are involved? Trends Genet 2001 17: 93–100

    CAS  PubMed  Google Scholar 

  50. Rønningen KS, Keiding N, Green A . EURODIAB ACE Study Group. Correlations between the incidence of childhood-onset of type 1 diabetes in Europe and HLA genotypes Diabetologia 2001 44 (Suppl 3): B51–B59

    Google Scholar 

  51. Thomson G, Robinson WP, Kuhner MK et al. Genetic heterogeneity, modes of inheritance, and risk estimates for a joint study of Caucasians with insulin-dependent diabetes mellitus Am J Hum Genet 1988 43: 799–816

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Pugliese A, Gianani R, Moromisato R et al. HLA-DQB1*0602 is associated with dominant protection from diabetes even among islet cell antibody-positive first-degree relatives of patients with IDDM Diabetes 1995 44: 608–613

    CAS  PubMed  Google Scholar 

  53. Baisch JM, Weeks T, Giles R, Hoover M, Stastny P, Capra JD . Analysis of HLA-DQ genotypes and susceptibility in insulin-dependent diabetes mellitus N Engl J Med 1990 322: 1836–1841

    CAS  PubMed  Google Scholar 

  54. Nepom GT . A unified hypothesis for the complex genetics of HLA associations with IDDM Diabetes 1990 39: 1153–1157

    CAS  PubMed  Google Scholar 

  55. Sheehy MJ, Scharf SJ, Rowe JR et al. A diabetes-susceptible HLA haplotype is best defined by a combination of HLA-DR and DQ alleles J Clin Invest 1989 83: 830–835

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Caillat-Zucman S, Garchon HJ, Timsit J et al. Age-dependent HLA genetic heterogeneity of type 1 insulin-dependent diabetes mellitus J Clin Invest 1992 90: 2242–2250

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Cucca F, Lampis R, Frau F et al. The distribution of DR4 haplotypes in Sardinia suggests a primary association of type 1 diabetes with DRB1 and DQB1 loci Hum Immunol 1995 43: 301–308

    CAS  PubMed  Google Scholar 

  58. Undlien DE, Friede T, Rammensee HG et al. HLA-encoded genetic predisposition in IDDM: DR4 subtypes may be associated with different degrees of protection Diabetes 1997 46: 143–149

    CAS  PubMed  Google Scholar 

  59. Cucca F, Lampis R, Congia M et al. A correlation between the relative predisposition of MHC class II alleles to type 1 diabetes and the structure of their proteins Hum Mol Genet 2001 10: 2025–2037

    CAS  PubMed  Google Scholar 

  60. Chao CC, Sytwu HK, Chen EL, Toma J, McDevitt HO . The role of MHC class II molecules in susceptibility to type 1 diabetes: identification of peptide epitopes and characterization of the T cell repertoire Proc Natl Acad Sci USA 1999 96: 9299–9304

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Latek RR, Suri A, Petzold SJ et al. Structural basis of peptide binding and presentation by the type I diabetes-associated MHC class II molecule of NOD mice Immunity 2001 12: 699–710

    Google Scholar 

  62. Stratmann T, Apostolopoulos V, Mallet-Designe V et al. TheI-Ag7 MHC class II molecule linked to murine diabetes is a promiscuous peptide binder J Immunol 2000 165: 3214–3225

    CAS  PubMed  Google Scholar 

  63. Lee KH, Wucherpfennig KW, Wiley DC . Structure of a human insulin peptide-HLA-DQ8 complex and susceptibility to type 1 diabetes Nat Immunol 2001 2: 501–507

    CAS  PubMed  Google Scholar 

  64. McDevitt HO . Closing in on type 1 diabetes N Engl J Med 2001 345: 1060–1061

    CAS  PubMed  Google Scholar 

  65. Kwok WW, Domeier ME, Johnson ML, Nepom GT, Koelle DM . HLA-DQB1 codon 57 is critical for peptide binding and recognition J Exp Med 1996 183: 1253–1258

    CAS  PubMed  Google Scholar 

  66. Corper AL, Stratmann T, Apostolopoulos V et al. A structural framework for deciphering the link between I-Ag7 and autoimmune diabetes Science 2000 288: 505–511

    CAS  PubMed  Google Scholar 

  67. Awata T, Kuzuya T, Matsuda A et al. High frequency of aspartic acid at position 57 of HLA-DQ beta-chain in Japanese IDDM patients and nondiabetic subjects Diabetes 1990 39: 266–269

    CAS  PubMed  Google Scholar 

  68. Yamagata K, Hanafusa T, Nakajima H et al. HLA-DQA1*1 contributes to resistance and A1*3 confers susceptibility to type 1 (insulin-dependent) diabetes mellitus in Japanese subjects Diabetologia 1991 34: 133–136

    CAS  PubMed  Google Scholar 

  69. Erlich HA, Rotter JI, Chang JD et al. Association of HLA-DPB1*0301 with IDDM in Mexican-Americans Diabetes 1996 45: 610–614

    CAS  PubMed  Google Scholar 

  70. Noble JA, Valdes AM, Thomson G, Erlich HA . The HLA class II locus DPB1 can influence susceptibility to type 1 diabetes Diabetes 2000 49: 121–125

    CAS  PubMed  Google Scholar 

  71. Valdes AM, Noble JA, Genin E, Clerget-Darpoux F, Erlich HA, Thomson G . Modeling of HLA class II susceptibility to type I diabetes reveals an effect associated with DPB1 Genet Epidemiol 2001 21: 212–223

    CAS  PubMed  Google Scholar 

  72. Lie BA, Akselsen HE, Joner G et al. HLA associations in insulin-dependent diabetes mellitus: no independent association to particular DP genes Hum Immunol 1997 55: 170–175

    CAS  PubMed  Google Scholar 

  73. Cucca F, Dudbridge F, Loddo M et al. The HLA-DPB1-associated component of the IDDM1 and its relationship to the major loci HLA-DQB1, -DQA1, and -DRB1 Diabetes 2001 50: 1200–1205

    CAS  PubMed  Google Scholar 

  74. Endert PMv, Liblau R, Patel SD et al. Major histocompatibility complex-encoded antigen processing gene polymorphism in IDDM Diabetes 1994 43: 110–117

    PubMed  Google Scholar 

  75. Caillat-Zucman S, Daniel S, Djilali-Saiah I et al. Family study of linkage disequilibrium between TAP2 transporter and HLA class II genes. Absence of TAP2 contribution to association with insulin-dependent diabetes mellitus Hum Immunol 1995 44: 80–87

    CAS  PubMed  Google Scholar 

  76. Undlien DE, Akselsen HE, Joner G et al. No independent associations of LMP2 and LMP7 polymorphisms with susceptibility to develop IDDM Diabetes 1997 46: 307–312

    CAS  PubMed  Google Scholar 

  77. Thomsen M, Mcvig J, Zerbib A et al. The susceptibility to insulin-dependent diabetes mellitus is associated with C4 allotypes independently of the association with HLA-DQ alleles in HLA-DR3, 4 heterozygotes Immunogenetics 1988 28: 320–327

    CAS  PubMed  Google Scholar 

  78. Pociot F, Mcvig J, Wogensen L et al. A tumour necrosis factor beta gene polymorphism in relation to monokine secretion and insulin-dependent diabetes mellitus J Scand Immunol 1991 33: 37–49

    CAS  Google Scholar 

  79. Robinson WP, Barbosa J, Rich SS, Thomson G . Homozygous parent affected sib pair method for detecting disease predisposing variants—application to insulin-dependent diabetes-mellitus Genet Epidemiol 1993 10: 273–288

    CAS  PubMed  Google Scholar 

  80. Pociot F, Briant L, Jongeneel CV et al. Association of tumor necrosis factor (TNF) and class II MHC alleles with the secretion of TNFa and TNFb by human mononuclear cells: a possible link to insulin-dependent diabetes mellitus Eur J Immunol 1993 23: 224–231

    CAS  PubMed  Google Scholar 

  81. Bidwell J, Keen L, Gallagher G et al. Cytokine gene polymorphism in human disease: on-line databases Genes Immun 1999 1: 3–19

    CAS  PubMed  Google Scholar 

  82. Bidwell J, Keen L, Gallagher G et al. Cytokine gene polymorphism in human disease: on-line databases, supplement 1 Genes Immun 2001 2: 61–70

    CAS  PubMed  Google Scholar 

  83. Moghaddam PH, Zwinderman AH, de-Knijff P et al. TNFa microsatellite polymorphism modulates the risk of IDDM in Caucasians with the high-risk genotype HLA DQA1*0501– DQB1*0201/DQA1*0301–DQB1*0302. Belgian Diabetes Regis- try Diabetes 1997 46: 1514–1515

    CAS  PubMed  Google Scholar 

  84. Nejentsev S, Reijonen H, Adojaan B et al. The effect of HLA-B allele on the IDDM risk defined by DRB1*04 subtypes and DQB1*0302 Diabetes 1997 46: 1888–1892

    CAS  PubMed  Google Scholar 

  85. Lie BA, Todd JA, Pociot F et al. The predisposition to type 1 diabetes linked to the human leukocyte antigen complex includes at least one non-class II gene Am J Hum Genet 1999 64: 793–800

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Nejentsev S, Gombos Z, Laine AP et al. Non-class II HLA gene associated with type 1 diabetes maps to the 240-kb region near HLA-B Diabetes 2000 49: 2217–2221

    CAS  PubMed  Google Scholar 

  87. Herr M, Dudbridge F, Zavattari P et al. Evaluation of fine mapping strategies for a multifactorial disease locus: systematic linkage and association analysis of IDDM1 in the HLA region on chromosome 6p21 Hum Mol Genet 2000 9: 1291–1301

    CAS  PubMed  Google Scholar 

  88. Cordell HJ, Clayton DG . A unified stepwise regression procedure for evaluating the relative effects of polymorphisms within a gene using case/control or family data: application to HLA in type 1 diabetes Am J Hum Genet 2002 70: 124–141

    CAS  PubMed  Google Scholar 

  89. Zavattari P, Lampis R, Motzo C et al. Conditional linkage disequilibrium analysis of a complex disease superlocus, IDDM1 in the HLA region, reveals the presence of independent modifying gene effects influencing the type 1 diabetes risk encoded by the major HLA-DQB1, -DRB1 disease loci Hum Mol Genet 2001 10: 881–889

    CAS  PubMed  Google Scholar 

  90. Lander E, Kruglyak L . Genetic dissection of complex traits: guidelines for interpreting and reporting linkage results Nat Genet 1995 11: 241–247

    CAS  PubMed  Google Scholar 

  91. Bell GI, Selby MJ, Rutter WJ . The highly polymorphic region near the human insulin gene is composed of simple tandemly repeating sequences Nature 1982 295: 31–35

    CAS  PubMed  Google Scholar 

  92. Rotwein P, Yokoyama S, Didier DK, Chirgwin JM . Genetic analysis of the hypervariable region flanking the human insulin gene Am J Hum Genet 1986 39: 291–299

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Bennett ST, Lucassen AM, Gough SCL et al. Susceptibility to human type 1 diabetes at IDDM2 is determined by tandem repeat variation at the insulin gene minisatellite locus Nat Genet 1995 9: 284–292

    CAS  PubMed  Google Scholar 

  94. Owerbach D, Nerup J . Restriction fragment length polymorphism of the insulin gene in diabetes mellitus Diabetes 1982 31: 275–277

    CAS  PubMed  Google Scholar 

  95. Bell GI, Horita S, Karam JH . A polymophic locus near the human insulin gene is associated with insulin-dependent diabetes mellitus Diabetes 1984 33: 1504–1509

    Google Scholar 

  96. Julier C, Hyer RN, Davies J et al. Insulin-IGF2 region on chromosome 11p encodes a gene implicated in HLA-DR4-dependent diabetes susceptibility Nature 1991 354: 155–159

    CAS  PubMed  Google Scholar 

  97. Lucassen AM, Julier C, Beressi J-P et al. Susceptibility to insulin-dependent diabetes mellitus maps to a 4.1 kb segment of DNA spanning the insulin gene and associated VNTR Nat Genet 1993 4: 305–310

    CAS  PubMed  Google Scholar 

  98. Owerbach D, Gabbay KH . Localization of a type I diabetes susceptibility locus to the variable tandem repeat region flanking the insulin gene Diabetes 1993 42: 1708–1714

    CAS  PubMed  Google Scholar 

  99. Julier C, Lucassen A, Villedieu P et al. Multiple DNA variant association analysis: application to the insulin gene region in type 1 diabetes Am J Hum Genet 1994 55: 1247–1254

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Undlien DE, Bennett ST, Todd JA et al. Insulin gene region-encoded susceptibility to IDDM maps upstream of the insulin gene Diabetes 1995 44: 620–625

    CAS  PubMed  Google Scholar 

  101. Bennett ST, Wilson AJ, Cucca F et al. IDDM2–VNTR-encoded susceptibility to type 1 diabetes—predisposition, protection and parental transmission of alleles of the insulin gene-linked locus J Autoimmunity 1996 9: 415–421

    CAS  Google Scholar 

  102. Bennett ST, Wilson AJ, Esposito L et al. Insulin VNTR allele-specific effect in type 1 diabetes depends on identity of untransmitted paternal allele Nat Genet 1997 17: 350–352

    CAS  PubMed  Google Scholar 

  103. Doria A, Lee J, Warram JH, Krolewski AS . Diabetes susceptibility at IDDM2 cannot be positively mapped to the VNTR locus of the insulin gene Diabetologia 1996 39: 594–599

    CAS  PubMed  Google Scholar 

  104. Owerbach D, Poulsen S, Billesbolle P, Nerup J . DNA insertion sequences near the insulin gene affect glucose regulation Lancet 1982 1: 880–883

    CAS  PubMed  Google Scholar 

  105. Cocozza S, Riccardi G, Monticelli A et al. Polymorphism at the 5′ end flanking region of the insulin gene is associated with reduced insulin secretion in healthy individuals Eur J Clin Invest 1988 18: 582–586

    CAS  PubMed  Google Scholar 

  106. Hammond-Kosack MC, Dobrinski B, Lurz R, Docherty K, Kilpatrick MW . The human insulin gene linked polymorphic region exhibits an altered DNA structure Nucleic Acids Res 1992 20: 231–236

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Hammond-Kosack MC, Kilpatrick MW, Docherty K . The human insulin gene-linked polymorphic region adopts a G-quartet structure in chromatin assembled in vitro J Mol Endocrinol 1993 10: 121–126

    CAS  PubMed  Google Scholar 

  108. Lew A, Rutter WJ, Kennedy GC . Unusual DNA structure of the diabetes susceptibility locus IDDM2 and its effect on transcription by the insulin promoter factor Pur-1/MAZ Proc Natl Acad Sci USA 2000 97: 12508–12512

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Lucassen AM, Screaton GR, Julier C, Elliot TJ, Lathrop M, Bell JI . Regulation of insulin gene expression by IDDM associated, insulin locus haplotype Hum Mol Genet 1995 4: 501–506

    CAS  PubMed  Google Scholar 

  110. Kennedy GC, German MS, Rutter WJ . The minisatellite in the diabetes susceptibility locus IDDM2 regulates insulin transcription Nat Genet 1995 9: 293–298

    CAS  PubMed  Google Scholar 

  111. Pugliese A, Zeller M, Fernandez A et al. The insulin gene is transcribed in the human thymus and transcription levels correlate with allelic variation at the INS VNTR-IDDM2 susceptibility locus for type-1 diabetes Nat Genet 1997 15: 293–297

    CAS  PubMed  Google Scholar 

  112. Vafiadis P, Bennett S, Todd J et al. Insulin expression in human thymus is modulated by INS VNTR Nat Genet 1997 15: 289–292

    CAS  PubMed  Google Scholar 

  113. Vafiadis P, Ounissi-Benkalha H, Palumbo M et al. Class III alleles of the variable number of tandem repeat insulin polymorphism associated with silencing of thymic insulin predispose to type 1 diabetes J Clin Endocrinol Metab 2001 86: 3705–3710

    CAS  PubMed  Google Scholar 

  114. Werdelin O, Cordes U, Jensen T . Aberrant expression of tissue-specific proteins in the thymus: a hypothesis for the development of central tolerance Scand J Immunol 1998 47: 95–100

    CAS  PubMed  Google Scholar 

  115. Hanahan D . Peripheral-antigen-expressing cells in thymic medulla: factors in self-tolerance and autoimmunity Curr Opin Immunol 1998 10: 656–662

    CAS  PubMed  Google Scholar 

  116. Zamani M, Pociot F, Reymaekers P, Nerup J, Cassiman J-J . Linkage of type 1 diabetes to 15q26 (IDDM3) in the Danish population Hum Genet 1996 98: 491–496

    CAS  PubMed  Google Scholar 

  117. Nakagawa Y, Kawaguchi Y, Twells R et al. Fine mapping of the diabetes susceptibility gene IDDM4 on chromosome 11q13 Am J Hum Genet 1998 63: 547–556

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Sawicki M, Arnold E, Ebrahimi S et al. A transcript map encompassing the multiple endocrine neoplasia type-1 (MEN1) locus on chromosome 11q13 Genomics 1997 42: 405–412

    CAS  PubMed  Google Scholar 

  119. Kim P, Dutra A, Chandrasekharappa S, Puck J . Genomic structure and mapping of the human FADD, an intracellular mediator of lymphocyte apoptosis J Immunol 1996 157: 5461–5466

    CAS  PubMed  Google Scholar 

  120. Signore A, Annovazzi A, Gradini R, Liddi R, Ruberti G . Fas and Fas ligand-mediated apoptosis and its role in autoimmune diabetes Diabetes Metab Rev 1998 14: 197–206

    CAS  PubMed  Google Scholar 

  121. Mandrup-Poulsen T . beta-cell apoptosis: stimuli and signaling Diabetes 2001 50: (Suppl 1): S58–S63

    Google Scholar 

  122. Eckenrode S, Marron MP, Nicholls R et al. Fine-mapping of the type 1 diabetes locus (IDDM4) on chromosome 11q and evaluation of two candidate genes (FADD and GALN) by affected sibpair and linkage-disequilibrium analyses Hum Genet 2000 106: 14–18

    CAS  PubMed  Google Scholar 

  123. Hey P, Twells R, Phillips M et al. Cloning of a novel member of member of the low-density lipoprotein receptor family Gene 1998 216: 103–111

    CAS  PubMed  Google Scholar 

  124. Twells RCJ, Metzker ML, Brown SD et al. The sequence and gene characterization of a 400-kb candidate region for IDDM4 on chromosome 11q13 Genomics 2001 72: 231–242

    CAS  PubMed  Google Scholar 

  125. Davies JL, Cucca F, Goy JV et al. Saturation multipoint linkage mapping of chromosome 6q in type-1 diabetes Hum Mol Genet 1996 5: 1071–1074

    CAS  PubMed  Google Scholar 

  126. Church SL, Grant JW, Meese EU, Trent JM . Sublocalization of the gene encoding manganese superoxide dismutase (MnSOD/SOD2) to 6q25 by fluorescence in situ hybridization and somatic cell hybrid mapping Genomics 1992 14: 823–825

    CAS  PubMed  Google Scholar 

  127. Ho E, Bray TM . Antioxidants, NFkappaB activation, and diabetogenesis Proc Soc Exp Biol Med 1999 222: 205–213

    CAS  PubMed  Google Scholar 

  128. Andrade J, Conde M, Ramirez R et al. Protection from nicotinamide inhibition of interleukin-1 beta-induced RIN cell nitric oxide formation is associated with induction of MnSOD enzyme activity Endocrinology 1996 137: 4806–4810

    CAS  PubMed  Google Scholar 

  129. Hohmeier HE, Thigpen A, Tran VV, Davis R, Newgard CB . Stable expression of manganese superoxide dismutase (MnSOD) in insulinoma cells prevents IL-1beta-induced cytotoxicity and reduces nitric oxide production J Clin Invest 1998 101: 1811–1820

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Pociot F, Rningen KS, Bergholdt R et al. Genetic susceptibility markers in Danish patients with type 1 (insulin-dependent) diabetes—evidence for polygenecity in man Autoimmunity 1994 19: 169–178

    CAS  PubMed  Google Scholar 

  131. Borgstahl GE, Parge HE, Hickey MJ, Beyer WF, Hallewell RA, Tainer JA . The structure of human mitochondrial manganese superoxide dismutase reveals a novel tetrameric interface of two 4-helix bundles Cell 1992 71: 107–118

    CAS  PubMed  Google Scholar 

  132. Hodge SE, Anderson CE, Neiswanger K et al. Close genetic linkage between diabetes mellitus and kidd blood group Lancet 1981 2: 893–895

    CAS  PubMed  Google Scholar 

  133. Merriman T, Twells R, Merriman M et al. Evidence by allelic association-dependent methods for a type 1 diabetes polygene (IDDM6) to chromosome 18q12 Hum Mol Genet 1997 6: 1003–1010

    CAS  PubMed  Google Scholar 

  134. Merriman T, Eaves I, Twells R et al. Transmission of haplotypes of microsatellite markers rather than single markers alleles in the mapping of a putative type 1 diabetes susceptibility gene (IDDM6) Hum Mol Genet 1998 7: 517–524

    CAS  PubMed  Google Scholar 

  135. Merriman TR, Cordell HJ, Eaves IA et al. Suggestive evidence for association of human chromosome 18q12–q21 and its orthologue on rat and mouse chromosome 18 with several autoimmune diseases Diabetes 2001 50: 184–194

    CAS  PubMed  Google Scholar 

  136. Holmes DI, Wahab NA, Mason RM . Cloning and characterization of ZNF236, a glucose-regulated Kruppel-like zinc-finger gene mapping to human chromosome 18q22–q23 Genomics 1999 60: 105–109

    CAS  PubMed  Google Scholar 

  137. Komaki S, Kohno M, Matsuura N et al. The polymorphic 43Thr bcl-2 protein confers relative resistance to autoimmunity: an analytical evaluation Hum Genet 1998 103: 435–440

    CAS  PubMed  Google Scholar 

  138. Heding PE, Karlsen AE, Veijola R, Nerup J, Pociot F . No evidence of a functionally significant polymorphism of the BCL2 gene in Danish, Finnish and Basque type 1 diabetes families Genes Immun 2001 2: 398–400

    CAS  PubMed  Google Scholar 

  139. Copeman JB, Hearne C, Cornall RJ et al. Fine localisation of a type 1 diabetes susceptibility gene (IDDM7) to human chromosome 2q by linkage disequilibrium mapping Nat Genet 1995 9: 80–85

    CAS  PubMed  Google Scholar 

  140. Esposito L, Hill NJ, Pritchard LE et al. Genetic analysis of chromosome 2 in type 1 diabetes: analysis of putative loci IDDM7, IDDM12, and IDDM13 and candidate genes NRAMP1 and IA-2 and the interleukin-1 gene cluster. IMDIAB Group Diabetes 1998 47: 1797–1799

    CAS  PubMed  Google Scholar 

  141. Kristiansen OP, Pociot F, Bennett EP et al. IDDM7 links to insulin-dependent diabetes mellitus in Danish multiplex families but linkage is not explained by novel polymorphisms in the candidate gene GALNT3. The Danish Study Group of Diabetes in Childhood and The Danish IDDM Epidemiology andGenetics Group Hum Mutat 2000 15: 295–296

    CAS  PubMed  Google Scholar 

  142. Cornall RJ, Prins JB, Todd JA et al. Type 1 diabetes is linked to the interleukin-1 receptor and Ish/ity/bcg genes on chromosome 1 Nature 1991 353: 262–265

    CAS  PubMed  Google Scholar 

  143. Garchon H-J, Bedossa P, Eloy L, Bach J-F . Identification and mapping to chromosome 1 of a susceptibility gene for periinsulitis in non-obese diabetic mice Nature 1991 353: 260–262

    CAS  PubMed  Google Scholar 

  144. Bergholdt R, Karlsen AE, Johannesen J et al. Characterization of polymorphisms of an interleukin-1 receptor type 1 gene (IL1RI) promoter region (P2) and their relation to insulin-dependent diabetes mellitus (IDDM) Cytokine 1995 7: 727–732

    CAS  PubMed  Google Scholar 

  145. Metcalfe KA, Hitman GA, Pociot F et al. An association between type 1 diabetes and the interleukin-1 receptor type 1 gene Hum Immunol 1996 51: 41–48

    CAS  PubMed  Google Scholar 

  146. Bergholdt R, Larsen ZM, Andersen NA et al. Characterization of new polymorphisms in the 5′ UTR of the human interleukin-1 receptor type 1 (IL1R1) gene: linkage to type 1 diabetes and correlation to IL-1RI plasma level Genes Immun 2000 1: 495–500

    CAS  PubMed  Google Scholar 

  147. Pociot F, Mvig J, Wogensen L, Worsaae H, Nerup J . A Taql polymorphism in the human interleukin-1b (IL-1b) gene correlates with IL-1b secretion in vitro Eur J Clin Invest 1992 22: 396–402

    CAS  PubMed  Google Scholar 

  148. Kristiansen OP, Pociot F, Johannesen J et al. Linkage disequilibrium testing of four interleukin-1 gene-cluster polymorphisms in Danish multiplex families with insulin-dependent diabetes mellitus Cytokine 2000 12: 171–175

    CAS  PubMed  Google Scholar 

  149. Mandrup-Poulsen T, Pociot F, Mvig J et al. Monokine antagonism is reduced in patients with IDDM Diabetes 1994 43: 1242–1247

    CAS  PubMed  Google Scholar 

  150. Owerbach D, Gabbay KH . The HOXD8 locus (2q31) is linked to type I diabetes. Interaction with chomosome 6 and 11 disease susceptibility genes Diabetes 1995 44: 132–136

    CAS  PubMed  Google Scholar 

  151. Rambrand T, Pociot F, Rønningen KS, Nerup J, Michelsen B the Danish Study Group of Diabetes in Childhood. Genetic markers for glutamic acid decarboxylase do not predict insulin-dependent diabetes mellitus in pairs of affected siblings Hum Genet 1997 99: 177–185

    CAS  PubMed  Google Scholar 

  152. Iwata I, Nagafuchi S, Nakashima H et al. Association of polymorphism in the NeuroD/BETA2 gene with type 1 diabetes in the Japanese Diabetes 1999 48: 416–419

    CAS  PubMed  Google Scholar 

  153. Dupont S, Dina C, Hani EH, Froguel P . Absence of replication in the french population of the association between BETA2/NEUROD-A45T polymorphism and Type 1 diabetes Diabetes Metab 1999 25: 516–517

    CAS  PubMed  Google Scholar 

  154. Hansen L, Jensen JN, Urioste S et al. NeuroD/BETA2 gene variability and diabetes: no associations to late-onset type 2 diabetes but an A45 allele may represent a susceptibility marker for type 1 diabetes among Danes. Danish Study Group of Diabetes in Childhood, and the Danish IDDM Epidemiology and Genetics Group Diabetes 2000 49: 876–878

    CAS  PubMed  Google Scholar 

  155. Owerbach D . Physical and genetic mapping of IDDM8 on chromosome 6q27 Diabetes 2000 49: 508–512

    CAS  PubMed  Google Scholar 

  156. Nyholt DR . All LODs are not created equal Am J Hum Genet 2000 67: 282–288

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Reed P, Cucca F, Jenkins S et al. Evidence for a type-1 diabetes susceptibility locus (iddm 10) on human-chromosome 10p11–q11 Hum Mol Genet 1997 6: 1011–1016

    CAS  PubMed  Google Scholar 

  158. Heron L, Virsolvy A, Apiou F, Le-Cam A, Bataille D . Isolation, characterization, and chromosomal localization of the human ENSA gene that encodes alpha-endosulfine, a regulator of beta-cell K(ATP) channels Diabetes 1999 48: 1873–1876

    CAS  PubMed  Google Scholar 

  159. Harada Y, Ozaki K, Suzuki M et al. Complete cDNA sequence and genomic organization of a human pancreas-specific gene homologous to Caenorhabditis elegans sel-1 J Hum Genet 1999 44: 330–336

    CAS  PubMed  Google Scholar 

  160. Biunno I, Bernard L, Dear P et al. SEL1L, the human homolog of C-elegans sel-1: refined physical mapping, gene structure and identification of polymorphic markers Hum Genet 2000 106: 227–235

    CAS  PubMed  Google Scholar 

  161. Weinmaster G . Notch signal transduction: a real Rip and more Curr Opin Genet Dev 2000 10: 363–369

    CAS  PubMed  Google Scholar 

  162. Apelqvist A, Li H, Sommer L et al. Notch signalling controls pancreatic cell differentiation Nature 1999 400: 877–881

    CAS  PubMed  Google Scholar 

  163. Jensen J, Pedersen EE, Galante P et al. Control sf endodermal endocrine development by Hes-1 Nat Genet 2000 24: 36–44

    CAS  PubMed  Google Scholar 

  164. Jensen J, Heller RS, Funder-Nielsen T et al. Independent development of pancreatic alpha- and beta-cells from Neurogenin3-expressing precursors—A role for the notch pathway in repression of premature differentiation Diabetes 2000 49: 163–176

    CAS  PubMed  Google Scholar 

  165. Donoviel DB, Donoviel MS, Fan E, Hadjantonakis AK, Bernstein A . Cloning and characterization of Sel-11, a murine homolog of the C-elegans sel-1 gene Mech Dev 1998 78: 203–207

    CAS  PubMed  Google Scholar 

  166. Pociot F, Larsen ZM, Zavattari P et al. No evidence for SEL1L as a candidate gene for IDDM11- conferred susceptibility Diabetes-Metab Res Rev 2001 17: 292–295

    CAS  PubMed  Google Scholar 

  167. Larsen ZL, Angelo AD, Cattaneo M et al. Complete mutation scanning of the human SEL1L gene—a candidate gene for type 1 diabetes Acta Diabetologica 2001 38: 191–192

    CAS  PubMed  Google Scholar 

  168. Nisticò L, Buzzetti R, Pritchard LE et al. The ctla-4 gene region of chromosome 2q33 is linked to, and associated with, type-1 diabetes Hum Mol Genet 1996 5: 1075–1080

    PubMed  Google Scholar 

  169. Bluestone JA . Is ctla-4 a master switch for peripheral t-cell tolerance J Immunol 1997 158: 1989–1993

    CAS  PubMed  Google Scholar 

  170. Marron MP, Zeidler A, Raffel LJ et al. Genetic and physical mapping of a type 1 diabetes susceptibility gene (IDDM12) to a 100-kb phagemid artificial chromosome clone containing D2S72–CTLA4–D2S105 on chromosome 2q33 Diabetes 2000 49: 492–499

    CAS  PubMed  Google Scholar 

  171. Marron MP, Raffel LJ, Garchon H-J et al. Insulin-dependent diabetes mellitus (IDDM) is associated with CTLA4 polymorphisms in multiple ethnic groups Hum Mol Genet 1997 6: 1275–1282

    CAS  PubMed  Google Scholar 

  172. Owerbach D, Naya FJ, Tsai M-J, Allander SV, Powell DR, Gabbay KH . Analysis of candidate genes for susceptibility to type 1 diabetes. A case-control and family-association study of genes on chromosome 2q31–35 Diabetes 1997 46: 1069–1074

    CAS  PubMed  Google Scholar 

  173. Donner H, Rau H, Walfish PG et al. CTLA4 alanine-17 confers genetic susceptibility to Graves’ disease and to type 1 diabetes mellitus J Clin Endocrinol Metabol 1997 82: 143–146

    CAS  Google Scholar 

  174. Barnes R, Grabs R, Polychronakos C . A CTLA-4 polymorphism affects lymphocyte mRNA levels but is not associated with type 1 diabetes in a Canadian dataset Diabetologia 1997 40 (Suppl 1): A51

    Google Scholar 

  175. van der Auwera BJ, Vandewalle CL, Schuit FC et al. CTLA-4 gene polymorphism confers susceptibility to insulin-dependent diabetes mellitus (IDDM) independently from age and from other genetic or immune disease markers Clin Exp Immunol 1997 110: 98–103

    CAS  PubMed  PubMed Central  Google Scholar 

  176. Donner H, Seidl C, Braun J et al. CTLA4 gene haplotypes cannot protect from IDDM in the presence of high-risk HLA DQ8 or DQ2 alleles in German families Diabetes 1998 47: 1158–1160

    CAS  PubMed  Google Scholar 

  177. Djilali-Saiah I, Larger E, Harfouch-Hammoud E et al. No major role for the CTLA-4 gene in the association of autoimmune thyroid disease with IDDM Diabetes 1998 47: 125–127

    CAS  PubMed  Google Scholar 

  178. Awata T, Kurihara S, Iitaka M et al. Association of CTLA-4 gene A-G polymorphism (IDDM12) with acute-onset and insulin-depleted IDDM as well as autoimmune thyroid disease (Graves’ disease and Hashimoto’s thyroiditis) in the Japanese population Diabetes 1998 47: 128–129

    CAS  PubMed  Google Scholar 

  179. Krokowski M, Bodalski J, Bratek A, Machejko P, Caillat-Zucman S . CTLA-4 gene polymorphism is associated withpredisposition to IDDM in a population from central Poland Diabetes Metab 1998 24: 241–243

    CAS  PubMed  Google Scholar 

  180. Abe T, Takino H, Yamasaki H et al. CTLA4 gene polymorphism correlates with the mode of onset and presence of ICA512 Ab in Japanese type 1 diabetes Diabetes Res Clin Pract 1999 46: 169–175

    CAS  PubMed  Google Scholar 

  181. Perez-de NG, Bilbao JR, Nistico L et al. No evidence of association of chromosome 2q with Type I diabetes in the Basque population Diabetologia 1999 42: 119–120

    Google Scholar 

  182. Hayashi H, Kusaka I, Nagasaka S et al. Association of CTLA-4 polymorphism with positive anti-GAD antibody in Japanese subjects with type 1 diabetes mellitus Clin Endocrinol (Oxf) 1999 51: 793–799

    CAS  Google Scholar 

  183. Lowe RM, Graham J, Sund G et al. The length of the CTLA-4 microsatellite (AT)N-repeat affects the risk for type 1 diabetes. Diabetes Incidence in Sweden Study Group Autoimmunity 2000 32: 173–180

    CAS  PubMed  Google Scholar 

  184. Lee YJ, Huang FY, Lo FS et al. Association of CTLA4 gene A-G polymorphism with type 1 diabetes in Chinese children Clin Endocrinol (Oxf) 2000 52: 153–157

    CAS  Google Scholar 

  185. McCormack RM, Maxwell AP, Carson D, Patterson CC, Bingham A, Savage DA . Possible association between CTLA4 DNA polymorphisms and early onset type 1 diabetes in a UK population Genes Immun 2001 2: 233–235

    CAS  PubMed  Google Scholar 

  186. Ihara K, Ahmed S, Nakao F et al. Association studies of CTLA-4, CD28, and ICOS gene polymorphisms with type 1 diabetes in the Japanese population Immunogenetics 2001 53: 447–454

    CAS  PubMed  Google Scholar 

  187. Larsen Z, Kristiansen OP, Mato E et al. IDDM12 (CTLA4) and IDDM13 on 2q34 in genetic susceptibility to Type 1 diabetes (insulin-dependent) Autoimmunity 1999 31: 35–42

    CAS  PubMed  Google Scholar 

  188. Kouki T, Sawai Y, Gardine CA, Fisfalen ME, Alegre ML, DeGroot LJ . CTLA-4 gene polymorphism at position 49 in exon 1 reduces the inhibitory function of CTLA-4 and contributes to the pathogenesis of Graves’ disease J Immunol 2000 165: 6606–6611

    CAS  PubMed  Google Scholar 

  189. Ligers A, Teleshova N, Masterman T, Huang WX, Hillert J . CTLA-4 gene expression is influenced by promoter and exon 1 polymorphisms Genes Immun 2001 2: 145–152

    CAS  PubMed  Google Scholar 

  190. Karandikar NJ, Vanderlugt CL, Walunas TL, Miller SD, Bluestone JA . CTLA-4: a negative regulator of autoimmune disease J Exp Med 1996 184: 783–788

    CAS  PubMed  Google Scholar 

  191. Kristiansen OP, Larsen ZM, Pociot F . CTLA-4 in autoimmune diseases–a general susceptibility gene to autoimmunity? Genes Immun 2000 1: 170–184

    CAS  PubMed  Google Scholar 

  192. Linsley PS, Nadler SG, Bajorath J et al. Binding stoichiometry of the cytotoxic T lymphocyte-associated molecule-4 (CTLA-4). A disulfide-linked homodimer binds two CD86 molecules J Biol Chem 1995 270: 15417–15424

    CAS  PubMed  Google Scholar 

  193. Greene JL, Leytze GM, Emswiler J et al. Covalent dimerization of CD28/CTLA-4 and oligomerization of CD80/CD86 regulate T cell costimulatory interactions J Biol Chem 1996 271: 26762–26771

    CAS  PubMed  Google Scholar 

  194. Takahashi T, Tagami T, Yamazaki S et al. Immunologic self-tolerance maintained by CD25(+)CD4(+) regulatory T cells constitutively expressing cytotoxic T lymphocyte-associated antigen 4 J Exp Med 2000 192: 303–310

    CAS  PubMed  PubMed Central  Google Scholar 

  195. Hutloff A, Dittrich AM, Beier KC et al. ICOS is an inducible T-cell co-stimulator structurally and functionally related to CD28 Nature 1999 397: 263–266

    CAS  PubMed  Google Scholar 

  196. Coyle AJ, Lehar S, Lloyd C et al. The CD28-related molecule ICOS is required for effective T cell-dependent immune responses Immunity 2000 13: 95–105

    CAS  PubMed  Google Scholar 

  197. Dong C, Juedes AE, Temann UA et al. ICOS co-stimulatory receptor is essential for T-cell activation and function Nature 2001 409: 97–101

    CAS  PubMed  Google Scholar 

  198. Tafuri A, Shahinian A, Bladt F et al. ICOS is essential for effective T-helper-cell responses Nature 2001 409: 105–109

    CAS  PubMed  Google Scholar 

  199. McAdam AJ, Greenwald RJ, Levin MA et al. ICOS is critical for CD40-mediated antibody class switching Nature 2001 409: 102–105

    CAS  PubMed  Google Scholar 

  200. Temple IK, Gardner RJ, Mackay DJ, Barber JC, Robinson DO, Shield JP . Transient neonatal diabetes: widening the understanding of the etiopathogenesis of diabetes Diabetes 2000 49: 1359–1366

    CAS  PubMed  Google Scholar 

  201. Cave H, Polak M, Drunat S, Denamur E, Czernichow P . Refinement of the 6q chromosomal region implicated in transient neonatal diabetes Diabetes 2000 49: 108–113

    CAS  PubMed  Google Scholar 

  202. Dugoujon JM, Cambon-Thomsen A . Immunoglobulin allotypes (GM and KM) and their interactions with HLA antigens in autoimmune diseases: a review Autoimmunity 1995 22: 245–260

    CAS  PubMed  Google Scholar 

  203. Veijola R, Knip M, Puukka R, Reijonen H, Cox DW, Ilonen J . The immunoglobulin heavy-chain variable region in insulin-dependent diabetes mellitus: affected-sib-pair analysis and association studies Am J Hum Genet 1996 59: 462–470

    CAS  PubMed  PubMed Central  Google Scholar 

  204. Nolsoe RL, Kristiansen OP, Sangthongpitag K et al. Complete molecular scanning of the human Fas gene: mutational analysis and linkage studies in families with type I diabetes mellitus. The Danish Study Group of Diabetes in Childhood and The Danish IDDM Epidemiology and Genetics Group Diabetologia 2000 43: 800–808

    CAS  PubMed  Google Scholar 

  205. Huang D, Cancilla MR, Morahan G . Complete primary structure, chromosomal localisation, and definition of polymorphisms of the gene encoding the human interleukin-12 p40 subunit Genes Immun 2000 1: 515–520

    CAS  PubMed  Google Scholar 

  206. Adorini L . Interleukin 12 and autoimmune diabetes Nat Genet 2001 27: 131–132

    CAS  PubMed  Google Scholar 

  207. Liblau RS, Singer SM, McDevitt HO . Th1 and Th2 CD4+ T cells in the pathogenesis of organ-specific autoimmune diseases Immunol Today 1995 16: 34–38

    CAS  PubMed  Google Scholar 

  208. Tian J, Olcott AP, Hanssen LR, Zekzer D, Middleton B, Kaufman DL . Infectious th1 and th2 autoimmunity in diabetes-prone mice Immunol Rev 1998 164: 119–127

    CAS  PubMed  Google Scholar 

  209. Trembleau S, Penna G, Bosi E, Mortara A, Gately MK, Adorini L . Interleukin-12 administration induces t-helper type-1 cells and accelerates autoimmune diabetes in nod mice J Exp Med 1995 181: 817–821

    CAS  PubMed  Google Scholar 

  210. Lamont AG, Adorini L . II-12—a key cytokine in immune regulation Immunol Today 1996 17: 214–217

    CAS  PubMed  Google Scholar 

  211. Segal BM, Shevach EM . II-12 unmasks latent autoimmune-disease in resistant mice J Exp Med 1996 184: 771–775

    CAS  PubMed  Google Scholar 

  212. Segal BM, Klinman DM, Shevach EM . Microbial products induce autoimmune-disease by an il-12-dependent pathway J Immunol 1997 158: 5087–5090

    CAS  PubMed  Google Scholar 

  213. Hall MA, McGlinn E, Coakley G et al. Genetic polymorphism of IL-12 p40 gene in immune-mediated disease Genes Immun 2000 1: 219–224

    CAS  PubMed  Google Scholar 

  214. Johansson S, Lie BA, Thorsby E, Undlien DE . The polymorphism in the 3′untranslated region of IL 12B has a negligible effect on the susceptibility to develop type 1 diabetes inNorway Immunogenetics 2001 53: 603–605

    CAS  PubMed  Google Scholar 

  215. Paterson AD, Petronis A . Age of diagnosis-based linkage analysis in type 1 diabetes Eur J Hum Genet 2000 8: 145–148

    CAS  PubMed  Google Scholar 

  216. Inoue H, Tanizawa Y, Wasson J et al. A gene encoding a transmembrane protein is mutated in patients with diabetes mellitus and optic atrophy (Wolfram syndrome) Nat Genet 1998 20: 143–148

    CAS  PubMed  Google Scholar 

  217. Strom T, Hörtnagel K, Hofmann S et al. Diabetes insipidus, diabetes mellitus, optic athrophy and deafness (DIDMOAD) caused by mutations in a novel gene (wolframin) coding for a predicted transmembrane protein Hum Mol Genet 1998 7: 2021–2028

    CAS  PubMed  Google Scholar 

  218. Hardy C, Khanim F, Torres R et al. Clinical and molecular genetic analysis of 19 Wolfram syndrome kindreds demonstrating a wide spectrum of mutations in WFS1 Am J Hum Genet 1999 65: 1279–1290

    CAS  PubMed  PubMed Central  Google Scholar 

  219. Cucca F, Goy J, Kawaguchi Y et al. A male-female bias in type 1 diabetes and linkage to chromosome Xp in MHC HLA-DR3-positive patients Nat Genet 1998 19: 301–302

    CAS  PubMed  Google Scholar 

  220. Anonymous. Vitamin D supplement in early childhood and risk for Type I (insulin-dependent) diabetes mellitus. The EURODIAB Substudy 2 Study Group Diabetologia 1999 42: 51–54

    PubMed  Google Scholar 

  221. Stene LC, Ulriksen J, Magnus P, Joner G . Use of cod liver oil during pregnancy associated with lower risk of Type I diabetes in the offspring Diabetologia 2000 43: 1093–1098

    CAS  PubMed  Google Scholar 

  222. Hypponen E, Laara E, Reunanen A, Jarvelin MR, Virtanen SM . Intake of vitamin D and risk of type 1 diabetes: a birth-cohort study Lancet 2001 358: 1500–1503

    CAS  PubMed  Google Scholar 

  223. Lemire JM . Immunomodulatory role of 1,25-dihydroxyvitamin D3 J Cell Biochem 1992 49: 26–31

    CAS  PubMed  Google Scholar 

  224. Hitman GA, Mannan N, McDermott MF et al. Vitamin D receptor gene polymorphisms influence insulin secretion in Bangladeshi Asians Diabetes 1998 47: 688–690

    CAS  PubMed  Google Scholar 

  225. Ogunkolade BW, Boucher BJ, Prahl JM et al. Vitamin D receptor mRNA and VDR protein levels in relation to vitamin D status, insulin secretory capacity and VDR genotype in Bangladeshi Asians Diabetes (in press)

  226. Zmuda JM, Cauley JA, Ferrell RE . Molecular epidemiology of vitamin D receptor gene variants Epidemiol Rev 2000 22: 203–217

    CAS  PubMed  Google Scholar 

  227. McDermott MF, Ramachandran A, Ogunkolade BW et al. Allelic variation in the vitamin D receptor influences susceptibility to IDDM in Indian Asians Diabetologia 1997 40: 971–975

    CAS  PubMed  Google Scholar 

  228. Pani MA, Knapp M, Donner H et al. Vitamin D receptor allele combinations influence genetic susceptibility to type 1 diabetes in Germans Diabetes 2000 49: 504–507

    CAS  PubMed  Google Scholar 

  229. Chang TJ, Lei HH, Yeh JI et al. Vitamin D receptor gene polymorphisms influence susceptibility to type 1 diabetes mellitus in the Taiwanese population Clin Endocrinol (Oxf) 2000 52: 575–580

    CAS  Google Scholar 

  230. Schork NJ . Extended multipoint identity-by-descent analysis of human quantitative traits—efficiency, power, and modeling considerations Am J Hum Genet 1993 53: 1306–1319

    CAS  PubMed  PubMed Central  Google Scholar 

  231. Tiwari HK, Elston RC . Linkage of multilocus components of variance to polymorphic markers Ann Hum Genet 1997 61: 253–261

    CAS  PubMed  Google Scholar 

  232. Zeng ZB . Theoretical basis for separation of multiple linked gene effects in mapping quantitative trait loci Proc Nat Acad Sci USA 1993 90: 10972–10976

    CAS  PubMed  PubMed Central  Google Scholar 

  233. Zeng ZB . Precision mapping of quantitative trait loci Genetics 1994 136: 1457–1468

    CAS  PubMed  PubMed Central  Google Scholar 

  234. Dupuis J, Brown PO, Siegmund D . Statistical-methods for linkage analysis of complex traits from high-resolution maps of identity by descent Genetics 1995 140: 843–856

    CAS  PubMed  PubMed Central  Google Scholar 

  235. Buhler J, Owerbach D, Schaffer AA, Kimmel M, Gabbay KH . Linkage analyses in type-i diabetes-mellitus using caspar, a software and statistical program for conditional analysis of polygenic diseases Hum Hered 1997 47: 211–222

    CAS  PubMed  Google Scholar 

  236. Farrall M . Affected sibpair linkage tests for multiple linked susceptibility genes Genet Epidemiol 1997 14: 103–115

    CAS  PubMed  Google Scholar 

  237. Cox NJ, Frigge M, Nicolae DL et al. Loci on chromosomes 2 (NIDDM1) and 15 interact to increase susceptibility to diabetes in Mexican Americans Nat Genet 1999 21: 213–215

    CAS  PubMed  Google Scholar 

  238. Lucek P, Hanke J, Reich J, Solla SA, Ott J . Multilocus nonparametric linkage analysis of complex trait loci with neural networks Human Hered 1998 48: 275–284

    CAS  Google Scholar 

  239. Kruglyak L, Lander ES . Complete multipoint sib-pair analysis of qualitative and quantitative traits Am J Hum Genet 1995 57: 439–454

    CAS  PubMed  PubMed Central  Google Scholar 

  240. Kruglyak L, Daly MJ, Reevedaly MP, Lander ES . Parametric and nonparametric linkage analysis—a unified multipoint approach Am J Hum Genet 1996 58: 1347–1363

    CAS  PubMed  PubMed Central  Google Scholar 

  241. Atkinson MA, Leiter EH . The NOD mouse model of type 1 diabetes: as good as it gets? Nat Med 1999 5: 601–604

    CAS  PubMed  Google Scholar 

  242. Mordes JP, Bortell R, Groen H, Guberski DL, Rossini AA, Greiner DL . Autoimmune diabetes mellitus in the BB rat In: Sima AAF, Shafrir E (eds) Animal Models of Diabetes: a primer Harwood Academic: Amsterdam 2001 pp. 1–41

    Google Scholar 

  243. Becker K, Simon R, Bailey-Wilson J et al. Clustering of non-major histocompatibility complex susceptibility candidate loci in human autoimmune diseases Proc Natl Acad Sci USA 1998 95: 9979–9984

    CAS  PubMed  PubMed Central  Google Scholar 

  244. Becker KG . Comparative genetics of type 1 diabetes and autoimmune disease—Common loci, common pathways? Diabetes 1999 48: 1353–1358

    CAS  PubMed  Google Scholar 

  245. Cordell HJ, Todd JA, Bennett ST, Kawaguchi Y, Farrall M . Two-locus maximum lod score analysis of a multifactorial trait: joint consideration of IDDM2 and IDDM4 with IDDM1 in type 1 diabetes Am J Hum Genet 1995 57: 920–934

    CAS  PubMed  PubMed Central  Google Scholar 

  246. Coraddu F, Sawcer S, D’Alfonso S et al. A genome screen for multiple sclerosis in Sardinian multiplex families Eur J Hum Genet 2001 9: 621–626

    CAS  PubMed  Google Scholar 

  247. Susi M, Holopainen P, Mustalahti K, Maki M, Partanen J . Candidate gene region 15q26 and genetic susceptibility to coeliac disease in Finnish families Scand J Gastroenterol 2001 36: 372–374

    CAS  PubMed  Google Scholar 

  248. Myerscough A, John S, Barrett JH, Ollier WER, Worthington J . Linkage of rheumatoid arthritis to insulin-dependent diabetes mellitus loci—Evidence supporting a hypothesis for the existence of common autoimmune susceptibility loci Arthritis Rheum 2000 43: 2771–2775

    CAS  PubMed  Google Scholar 

  249. Cornelis F, Faure S, Martinez M et al. New susceptibility locus for rheumatoid-arthritis suggested by a genome-wide linkage study Proc Natl Acad Sci USA 1998 95: 10746–10750

    CAS  PubMed  PubMed Central  Google Scholar 

  250. Vaidya B, Imrie H, Perros P et al. Evidence for a new Graves disease susceptibility locus at chromosome 18q21 Am J Hum Genet 2000 66: 1710–1714

    CAS  PubMed  PubMed Central  Google Scholar 

  251. Nair RP, Henseler T, Jenisch S et al. Evidence for two psoriasis susceptibility loci (HLA and 17q) and two novel candidate regions (16q and 20p) by genome-wide scan Hum Mol Genet 1997 6: 1349–1356

    CAS  PubMed  Google Scholar 

  252. Ober C, Tsalenko A, Parry R, Cox NJ . A second-generationgenomewide screen for asthma-susceptibility alleles in a founder population Am J Hum Genet 2000 67: 1154–1162

    CAS  PubMed  PubMed Central  Google Scholar 

  253. King AL, Yiannakou JY, Brett PM et al. A genome-wide family-based linkage study of coeliac disease Ann Hum Genet 2000 64: 479–490

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F Pociot.

Additional information

This work was in part supported by the EU BioMed 2 Programme (grant no. BMH4–CT97–2311), Novo Nordisk A/S, The Danish Diabetes Association, and the DANDY Foundation. Support from the Juvenile Diabetes Foundation International is also acknowledged.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Pociot, F., McDermott, M. Genetics of type 1 diabetes mellitus. Genes Immun 3, 235–249 (2002). https://doi.org/10.1038/sj.gene.6363875

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gene.6363875

Keywords

  • type 1 diabetes mellitus
  • T1DM
  • genetic susceptibility
  • human leukocyte antigen
  • genome scan

Further reading

Search

Quick links