Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Reconfigurable materials

Algorithm for architectural origami

An algorithm has been developed allowing the rational design of origami-inspired materials that can be rearranged to change their properties. This might open the way to strategies for making reconfigurable robots. See Article p.347

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Get just this article for as long as you need it


Prices may be subject to local taxes which are calculated during checkout

Figure 1: Designing prismatic architected materials based on origami.


  1. See all news & views


  1. Overvelde, J. T. B., Weaver, J. C., Hoberman, C. & Bertoldi, K. Nature 541, 347–352 (2017).

    Article  ADS  CAS  Google Scholar 

  2. Yim, M. et al. IEEE Robot. Autom. Mag. 14, 43–52 (2007).

    Article  Google Scholar 

  3. Romanishin, J. W., Gilpin, K. & Rus, D. in Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems 4288–4295 (IEEE, 2013).

    Google Scholar 

  4. Neubert, J., Rost, A. & Lipson, H. IEEE Trans. Robot. 30, 1344–1357 (2014).

    Article  Google Scholar 

  5. Felton, S., Tolley, M., Demaine, E., Rus, D. & Wood, R. Science 345, 644–646 (2014).

    Article  ADS  CAS  Google Scholar 

  6. Firouzeh, A. & Paik, J. J. Mech. Robot. 7, 021009 (2015).

    Article  Google Scholar 

  7. Paez, L., Agarwal, G. & Paik, J. Soft Robot. 3, 109–119 (2016).

    Article  Google Scholar 

  8. Onal, C. D., Tolley, M. T., Wood, R. J. & Rus, D. IEEE/ASME Trans. Mechatronics 20, 2214–2221 (2015).

    Article  Google Scholar 

  9. Pfeifer, R., Lungarella, M. & Iida, F. Science 318, 1088–1093 (2007).

    Article  ADS  CAS  Google Scholar 

  10. Zykov, V., Mytilinaios, E., Desnoyer, M. & Lipson, H. IEEE Trans. Robot. 23, 308–319 (2007).

    Article  Google Scholar 

  11. Silverberg, J. L. et al. Science 345, 647–650 (2014).

    Article  ADS  CAS  Google Scholar 

  12. Waitukaitis, S., Menaut, R., Chen, B. G. & van Hecke, M. Phys. Rev. Lett. 114, 055503 (2015).

    Article  ADS  Google Scholar 

  13. Overvelde, J. T. B. et al. Nature Commun. 7, 10929 (2016).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Jamie Paik.

Related links

Related links

Related links in Nature Research

Materials science: The same, but better

Nanophotonics: Bright future for hyperbolic chips

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paik, J. Algorithm for architectural origami. Nature 541, 296–297 (2017).

Download citation

  • Published:

  • Issue Date:

  • DOI:


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing