A simple model captures the key features of the transition from smooth to turbulent flow for a fluid in a pipe. The findings pave the way for more-complex models and may have engineering ramifications. See Letter p.550
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 51 print issues and online access
$199.00 per year
only $3.90 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Notes
References
Barkley, D., Song, B., Mukund, V., Lemoult, G., Avila, M. & Hof, B. Nature 526, 550–553 (2015).
Fife, P. C. Dynamics of Internal Layers and Diffusive Interfaces (SIAM, 1988).
Hodgkin, A. L. & Huxley, A. F. J. Physiol. 117, 500–544 (1952).
Pomeau, Y. Physica D 23, 3–11 (1986).
Waleffe, F. J. Fluid Mech. 435, 93–102 (2001).
Kawahara, G., Uhlmann, M. & van Veen, L. Annu. Rev. Fluid Mech. 44, 203–225 (2012).
Graham, M. D. Phys. Fluids 26, 101301 (2014).
Matas, J.-P., Morris, J. F. & Guazzelli, É. Phys. Rev. Lett. 90, 014501 (2003).
Lemoult, G., Gumowski, K., Aider, J.-L. & Wesfreid, J. E. Eur. Phys. J. E 37, 25 (2014).
Duguet, Y. & Schlatter, P. Phys. Rev. Lett. 110, 034502 (2013).
Author information
Authors and Affiliations
Corresponding author
Related links
Rights and permissions
About this article
Cite this article
Graham, M. Turbulence spreads like wildfire. Nature 526, 508–509 (2015). https://doi.org/10.1038/526508a
Published:
Issue Date:
DOI: https://doi.org/10.1038/526508a