Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Nanophotonics

Bright future for hyperbolic chips

The unusual properties of hyperbolic metamaterials, such as their ability to propagate light on the nanoscale without diffraction, have been realized in two-dimensional devices, heralding improved photonic circuits. See Letter p.192

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Normal versus negative refraction in a hyperbolic metasurface (HMS).

Ref. 3

Notes

  1. See all news & views

References

  1. Almeida, V. R., Barrios, C. A., Panepucci, R. R. & Lipson, M. Nature 431, 1081–1084 (2004).

    Article  ADS  CAS  Google Scholar 

  2. Huang, K. C. Y. et al. Nature Photon. 8, 244–249 (2014).

    Article  ADS  CAS  Google Scholar 

  3. High, A. A. et al. Nature 522, 192–196 (2015).

    Article  ADS  CAS  Google Scholar 

  4. Poddubny, A., Iorsh, I., Belov, P. & Kivshar, Y. Nature Photon. 7, 948–957 (2013).

    Article  ADS  CAS  Google Scholar 

  5. Liu, Y. & Zhang, X. Appl. Phys. Lett. 103, 141101 (2013).

    Article  ADS  Google Scholar 

  6. Liu, Z., Lee, H., Xiong, Y., Sun, C. & Zhang, X. Science 315, 1686 (2007).

    Article  ADS  CAS  Google Scholar 

  7. Yao, J. et al. Science 321, 930 (2008).

    Article  ADS  CAS  Google Scholar 

  8. Jacob, Z., Alekseyev, L. V. & Narimanov, E. Opt. Express 14, 8247–8256 (2006).

    Article  ADS  Google Scholar 

  9. Salandrino, A. & Engheta, N. Phys. Rev. B 74, 075103 (2006).

    Article  ADS  Google Scholar 

  10. Smolyaninov, I. I., Hung, Y.-J. & Davis, C. C. Science 315, 1699–1701 (2007).

    Article  ADS  CAS  Google Scholar 

  11. Yang, X., Yao, J., Rho, J., Yin, X. & Zhang, X. Nature Photon. 6, 450–454 (2012).

    Article  ADS  CAS  Google Scholar 

  12. Cortes, C. L., Newman, W., Molesky, S. & Jacob, Z. J. Opt. 14, 063001 (2012).

    Article  ADS  Google Scholar 

  13. Shelby, R. A., Smith, D. R. & Schultz, S. Science 292, 77–79 (2001).

    Article  ADS  CAS  Google Scholar 

  14. Valentine, J. et al. Nature 455, 376–379 (2008).

    Article  ADS  CAS  Google Scholar 

  15. Bomzon, Z., Biener, G., Kleiner, V. & Hasman, E. Opt. Lett. 27, 1141–1143 (2002).

    Article  ADS  Google Scholar 

  16. Kapitanova, P. V. et al. Nature Commun. 5, 3226 (2014).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guy Bartal.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bartal, G. Bright future for hyperbolic chips. Nature 522, 160–161 (2015). https://doi.org/10.1038/522160a

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/522160a

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing