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Variable selection in logistic regression for detecting
SNP–SNP interactions: the rheumatoid arthritis
example
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Many complex disease traits are observed to be associated with single nucleotide polymorphism (SNP)
interactions. In testing small-scale SNP–SNP interactions, variable selection procedures in logistic
regressions are commonly used. The empirical evidence of variable selection for testing interactions in
logistic regressions is limited. This simulation study was designed to compare nine variable selection
procedures in logistic regressions for testing SNP–SNP interactions. Data on 10 SNPs were simulated for
400 and 1000 subjects (case/control ratio¼ 1). The simulated model included one main effect and two 2-
way interactions. The variable selection procedures included automatic selection (stepwise, forward and
backward), common 2-step selection, AIC- and SC-based selection. The hierarchical rule effect, in which all
main effects and lower order terms of the highest-order interaction term are included in the model
regardless of their statistical significance, was also examined. We found that the stepwise variable
selection without the hierarchical rule, which had reasonably high authentic (true positive) proportion and
low noise (false positive) proportion, is a better method compared to other variable selection procedures.
For testing interactions, the hierarchical rule effect was obvious. The procedure without the hierarchical
rule requires fewer terms in testing interactions, so it can accommodate more SNPs than the procedure
with the hierarchical rule. For testing interactions, the procedures without the hierarchical rule had higher
authentic proportion and lower noise proportion compared with ones with the hierarchical rule. These
variable selection procedures were also applied and compared in a rheumatoid arthritis study.
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Introduction
Many complex diseases, such as breast cancer, ischemic

stroke and hypertension have been found to be associated

with single nucleotide polymorphism (SNP) interaction

combinations.1–4 Identifying such interactions is consid-

ered difficult because of the following reasons: weak or no

marginal effects of some SNPs, a large number of SNPs and

their interaction to consider, or lack of prior information

about which SNPs interact. Several statistical methods have

been proposed to deal with SNP–SNP interactions, such as

multivariate adaptive regression splines,4 multifactor di-

mensionality reduction,5 combinational partitioning

method,6 neural networks7and random forest.8

Logistic regression (LR) is commonly used for analyzing

SNP–SNP interactions in some situations, such as a study
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with a limited number of SNPs,9–13 or 2-stage genome-

wide studies.14 The popularity of LR is that it is widely

available in most statistical packages and the output in

terms of disease risk is easy to understand by non-

statistician researchers. In comparison to some newly

developed methods, the variable selection of LR achieves

similar results within a limited number of SNPs.15,16 LR also

provides reasonable power for genome-wide SNP–SNP

interaction studies.14 In addition, LR can be used as the

second-stage variable selection in testing for gene–gene or

gene-environment interactions for a two-stage analysis

that incorporates a bootstrap procedure as the first stage of

selection.17,18 However, the limitations of variable selection

in LRs for testing SNP–SNP interactions have been

discussed widely. The primary limitation of LR is that poor

model parameter estimates may be generated because some

genotype combinations have low frequency or zero

responses especially when a large number of SNPs and

high order of interactions are considered.5,15,19

The variable selection of ‘main effects’ in an LR has been

discussed,20,21 but variable selection in an LR for testing

main effects with interactions has not been well docu-

mented. The Hierarchically Well-Formulated Rule (HWFR)

is typically applied for interaction analysis in LRs.22 Under

the HWFR, all lower order terms of the highest order

interaction term are included in the model, regardless of

their statistical significance. Without following the HWFR,

the results of interaction terms alone can also be inter-

pretable, and LR can be used to analyze more SNPs because

fewer terms are required. Although LR is popular in SNP-

interaction studies, assessments of the performance of the

LR variable selection procedures on detecting interaction

terms are limited.

In this study, we tested the common LR selection

procedures including stepwise, forward and backward selec-

tion with or without the HWFR. We also evaluate the Akaike

information criterion (AIC)-based and Schwartz criterion

(SC)-based selection procedures, which are amodified version

of the stepwise LR selection procedure to select the final

model based on AIC and SC.23 The AIC24 and SC25 criteria are

the common model selection criteria in LR. In addition, the

two-step variable selection procedure was tested, and the

details of this procedure are described in the following

section. Among the significant variables in LR, a high

percentage of them may be false positive.20 It is important

to validate the variable significance in LR. To know which

significant terms in an LR may be truly significant,

a bootstrap method19,26 can be applied. With increasing

numbers of SNP interaction studies, a rigorous comparison of

the various variable selection procedures and the impact of

the HWFR in LR for detecting SNP–SNP interactions is

needed. The objective of this study is (1) to evaluate and

compare performance of variable selection procedures in LR;

and (2) to demonstrate the application of variable selection

procedures in LR to a rheumatoid arthritis study.

Methods
Simulation

To evaluate performance of the variable selection proce-

dures in an LR, we generated a case–control dataset with

400 and 1000 subjects (case/control¼200/200 and 500/

500, respectively) where each subject had complete data on

10 SNPs. We assume no linkage disequilibrium among the

10 SNPs, so the genotype data on 10 SNPs were generated

independently. The 10 SNPs followed Hardy–Weinberg

equilibrium with percentages of common alleles from 0.6

to 0.8. We let WW, WV and VV denote homozygous wild

type, heterozygous wild/variant type and homozygous

variant genotypes, respectively. LRs were used to generate

outcome variables, for the following two practical reasons:

(1) LRs are the most commonly used methods to display

the association between binary outcomes and genetic

factors; and (2) this simulation method can allow for the

determination of associations between ‘multiple’ SNP

combinations and the outcome variable simultaneously.

The binary outcome variables of disease status were then

generated based on the following LR:

ln½pi=ð1� piÞ� ¼ �0:32þ 0:8 � SNP5i

�0:7 � SNP3i � SNP4i þ 1:5 � SNP9i � SNP10i

where i¼1, y, n¼ 400 or 1000, and pi is the probability of

disease. Among 10 candidate SNPs (SNP1–10), five of them

are functional. Associated with the outcome variable, the

inheritance modes of SNPs 3, 4, 5 and 9 were dominant,

and the mode of SNP10 was recessive. The coding of the

five functional SNPs was as follows:

Form ¼ 3; 4;5 and9; SNPm ¼ 0; if WW
1; if WV=VV

:

�

Form ¼ 10; SNPm ¼ 0; if WW=WV
1; if VV

�

The model was designed to examine various modes of

inheritance (dominant and recessive), interaction type (1-

or 2-way interaction) and risk/protective subgroups. In this

model, the SNP5 WV/VV genotypes (dominant) and the

genotype combination of SNP9 WV/VV and SNP10 VV

(dominant–recessive) were positively associated with the

disease; the genotype combination of SNP3 WV/VV and

SNP4 WV/VV (dominant–dominant) was significantly

associated with a lower disease risk.

Variable selection procedures

In practice, the true mode of inheritance for each SNP

associated with the outcome is unknown. It is impractical

to try different modes for all SNPs, so we treated each SNP

as a categorical variable with two dummies using the

common homozygous genotype as a reference category.

Four primary types of variable selection procedures were

examined: automatic selection, AIC-based selection,

SC-based selection and two-step selection. The last three
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methods included an automatic variable selection procedure.

We first evaluated six automatic variable selection proce-

dures described in the following section, and then the best

one was applied in the AIC-based, SC-based and two-step

selection procedures.

Automatic selection

In the automatic selection procedure, a total of six

procedures with combinations of three different selections

(forward selection (F), stepwise selection (S) and backward

elimination (B)) and the two HWFR statuses (yes/no) were

examined. The most commonly used entry and removal

criteria with P-values of 0.05 were used.

AIC- and SC-based selection

The AIC- and SC-based selection procedures are a modified

version of the stepwise LR selection procedure to select the

final model based on AIC and SC.23 The AIC and SC are

commonly used criteria for variable selection. The lower

the value, the better the model. The purpose of these two

methods is to reduce the number of models tested to a

manageable size. Shtatland et al23 used stepwise LR with

entry and removal criteria of P¼ 1.0 to generate a full

sequence of models beginning with the null model and

ending with the full model. Then, AIC and SC were

calculated for each model in the sequence. The best-fit

models were selected based on the smallest values of AIC or

SC. Due to the large number of SNP-interaction combina-

tions, it is difficult to use P¼ 1.0 as the entry and removal

criteria, so P¼0.5 was applied to get the sequence of

models.

Two-step selection

For two-step variable selection, bivariable selection to

evaluate the association for one SNP with the outcome at

a time is not appropriate, because the potential confoun-

ders are not included for control. A full model with all

candidate variables and a backward elimination regression

are recommended.27,28 In this study, the first step of

variable selection was to include all main effects of the

10 SNPs in the model and retained the covariates with a

conservative P-value less than 0.2. The second step was to

use the automatic selection with the best performance to

detect possible SNP interactions.

Model evaluation

Results were evaluated based on prediction accuracy.

Depending on whether the term was included in the

simulated model, two types of terms could be observed:

authentic and noise terms. Authentic (AP) and noise

proportion (NP) were calculated based on the following

equations. AP is the percentage of the authentic term

selected in 1000 replications. Although we set up three

terms in the simulated model, the three terms may not all

be significant during 1000 replications by chance. Thus,

the denominator for AP is the observed number of the

significant authentic terms in the 1000 simulated models.

NP is the percentage of noise terms among total terms in a

model. For each condition, the average NP was obtained

from 1000 replications.

Authentic Proportion ðAPÞ

¼number of times the authentic termwasdetected

number of significant authentic terms

Noise Proportion ðNPÞ

¼ number of false positive terms

number of total terms in themodel

Variable significance validation: bootstrap analysis

To know which significant terms in an LR may be truly

significant, a bootstrap method21,22 was applied. In this

method, an arbitrary number of repeated samples with the

original sample size were sampled with replacements from

the original data set. Here, we generated 1000 bootstrap

data sets from a given simulated data set. For each

bootstrap data set, we recomputed LRs by using the best

variable selection procedure in this study. The frequencies

of significant terms selected in 1000 runs were presented.

The lower the frequency that was selected, the lower the

chance to be true positive.

Real data example: rheumatoid arthritis

Rheumatoid Arthritis (RA) is an autoimmune disease with

complex etiology, which is assumed to be associated with

several genetic or environmental factors. For example, the

gene–gene and gene-environment interactions of RA

involving HLA-DRB1, PTPN22 and smoking has been

discussed.29 However, the inheritance of RA is largely

unknown. The presence of anti-cyclic citrullinated peptide

antibody can be used to characterize one subset of RA

patients. A total of 426 (308 rheumatoid arthritis patients

and 118 healthy controls) African-Americans were re-

cruited from the ongoing Consortium for the Longitudinal

Evaluation of African-Americans with Early Rheumatoid

Arthritis Study.30 We were interested in the following 10

SNPs in four genes, including: (i) BTNL2: rs2076529,

rs2076530 and rs9268480; (ii) MHC region: rs2239804

and rs2395165; (iii) FOXO3A: rs7747393 and rs9285397;

and, (iv) NOTCH4: rs394657, rs422951 and rs1109771.

These SNPs were treated as three-level categorical variables

using the common homozygous genotype as the reference

category. Hardy–Weinberg equilibrium was evaluated for

all 10 SNPs by using both w2 and exact tests. In the RA

control group, linkage disequilibrium in the same gene

among the 10 SNPs was evaluated using Lewontin’s D0. We

tested for up to 2-way SNP–SNP interactions with anti-

cyclic citrullinated peptide antibody status (positive
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vs negative) among African-American participants. For

SNPs with low frequencies (around 5%) in a homozygous

genotype, the homozygous genotype was combined with

the heterozygous genotype.

Results
Comparison of automatic variable selection
procedures

In Figure 1, we compared the six combinations of

automatic variable selection procedures (S, B and F with

or without following the HWFR) in LR. For impact of the

HWFR, procedures following the HWFR had higher

percentages to detect dominant SNP5 main effect in the

model than procedures not following the HWFR

(Figure 1a). However, the procedures without the HWFR

had dramatically higher percentages to detect the 2-way

interactions without main effects (Figures 1b and c). For

400 subjects, the percentages in detecting the main effect

in stepwise selection were 98 vs 83% for with and without

following the HWFR, respectively. Under the same condi-

tion, the percentages in detecting the dominant–domi-

nant SNP3*SNP4 interaction were 3 and 62% for the

selection with and without following the HWFR, respec-

tively. The percentage of detecting the dominant-recessive

SNP9*SNP10 interaction in stepwise selection with the

HWFR and without the HWFR were 1 and 60%, respectively.

In general, the procedures without the HWFR had lower NP

compared with ones with the HWFR. For example, the

stepwise selection without the HWFR could reduce NP to

less than half (32%) compared with those with the HWFR

(68%) in a sample size of 1000.

For testing the authentic terms, F and S selection without

the HWFR similarly had better performance compared with

B elimination without the HWFR. For the variable selection

procedures with the HWFR, B elimination had the lowest

percentage to detect the main effect but had the highest

percentage to detect the 2-way interactions. As the

percentage of noise terms, S without the HWFR had the

lowest NP, and B with the HWFR had the highest NP.

The sample size impact was different for the procedures

with or without the HWFR. In the procedures with the

HWFR, both AP and NP increased when sample size

increased. However, AP increased and NP decreased in

the procedures without the HWFR when sample size

increased. Based on the above results, S without the HWFR

was the preferable variable selection procedure because it

had a reasonably high AP and the lowest NP.

Comparison of stepwise, AIC-based, SC-based and 2-
step variable selection

S selection without the HWFR, the best among all six

combinations of automatic selection and the HWFR, was

applied in the AIC-based, SC-based and 2-step variable
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Figure 1 Comparison of stepwise, backward and forward selection and the Hierarchically Well-Formulated Rule (HWFR) in logistic regressions.
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selection procedures. As shown in Figure 2, the AIC-based

selection had not only the highest AP but also the highest

NP among all three authentic terms. For 400 subjects, the

AP of the AIC-based selection was even greater than 100%.

The SC-based selection had the lowest AP and the lowest

NP. Thus, the AIC-based selection was the most liberal

procedure and the SC-based selection was the most

conservative procedure. The S without the HWFR had the

second highest AP and the second lowest NP. For S without

the HWFR, the range of AP was 60–83% and the NP was

41% for a sample size of 400. For a sample size of 1000, the

range of AP for S without the HWFR increased to 86–98%

and the NP decreased to 32%.

Bootstrap analysis

To validate variable significance, a bootstrap method was

applied in a given simulated data set. For this simulated

data set, six significant terms were selected in the LR using

stepwise selection without the HWFR. This bootstrap

method successfully ranked the variables by the order of

variable significance. As shown in Table 1, three authentic

terms (SNP5, SNP3*SNP4, SNP9*SNP10) had the top three

highest frequencies in 1000 bootstrap runs. This shows that

bootstrap method is a useful method for validating variable

significance.

Result of real data example: rheumatoid arthritis

In the RA control group, three strong linkages (D040.8)

were found in rs2076529 and rs2076530; rs7747393; and

rs9285397; and rs394657 and rs422951. Thus, rs2076530,

rs9285397 and rs422951 were excluded from the analyses.

The remaining seven SNPs were in Hardy–Weinberg

equilibrium. As shown in Table 2, two main effects

(rs2395165 and rs7747393) and one 2-way interaction

(rs9268480*rs2239804) were chosen for the stepwise

selection and AIC-based selection. The SC-based selection

procedure only selected the same 2-way interaction as the

stepwise and AIC-based selections. The two-step procedure

selected another 2-way interaction (rs2076529*rs2239804).
The model selected from the stepwise without the HWFR,

which was the same as the one based on the AIC-based

selection, had the lowest value of AIC. The 2-way

interaction rs9268480*rs2239804 was selected 412 times

among 1000 LRs based on the bootstrap data. Therefore,

the rs9268480*rs2239804 interaction had a higher chance

to be truly associated with anti-cyclic citrullinated peptide

antibody. This also demonstrates that the term with the

highest chance to be true positive was included in the

stepwise selection without the HWFR, which is this

simulation study recommended method.
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Figure 2 Comparison of stepwise without the Hierarchically Well-Formulated Rule (HWFR), AIC-based, SC-based and 2-step variable selection in
logistic regressions.

Table 1 Frequency of significant terms in 1000 bootstrap
data

Term Frequency (selected/total)

SNP3*SNP4 785/1000
SNP5 658/1000
SNP9*SNP10 596/1000
SNP4*SNP5 456/1000
SNP1*SNP3 358/1000
SNP7*SNP8 245/1000
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Discussion
For testing interactions, the HWFR effect was obvious. The

variable selection procedure without the HWFR can be

more powerful in testing interactions with no or weak

main effects. The procedure without the HWFR requires

fewer terms in testing high-order interactions so it can

accommodate more SNPs than the procedure with the

HWFR. One more advantage of the selection without the

HWFR is that the AP increases and NP decreases as the

sample size increases.

In exploratory SNP association studies, we would prefer

to have high AP and relatively low NP. Among forward,

backward and stepwise automatic selection without the

HWFR, all three methods had similar AP in detecting

interactions, but the stepwise selection had the lowest NP

and the backward selection had the highest NP. Thus,

stepwise selection without the HWFR is the best among the

six automatic selection procedures. Comparing stepwise,

AIC-based, SC-based and 2-step selection, the AIC-based

selection was the most liberal procedure and the SC-based

selection was the most conservative procedure. The AIC-

based selection was suggested for prediction, and the

SC-based selection was suggested for description and

interpretation.23,31 The stepwise variable selection without

the HWFR, which had the second highest AP and the

second lowest NP, is a better method compared to other

variable selection procedures.

Variable selection of ‘main effects’ in an LR has been

discussed. The stepwise, forward and backward automatic

selections in LR provide similar results in detecting main-

effect covariates with the same entry and removal

criterion. It was recommended that variables included in

an LR should be nearly uncorrelated.26 The variable

selections in LR are very unstable and the percentage of

noise variables is high.27 Unlike the variable selection in

main effects only, we observed that the automatic selection

procedures performed differently in detecting interactions.

The stepwise selection without the HWFR, the best

variable selection procedure among the testing procedures,

had 30–40% noise terms in the model. This result is

consistent with other studies for detecting main effect in

LR.20,21 Although AP was the primary focus for exploratory

SNP studies, the high NP can interfere with researchers’

judgment. The bootstrap method provides us a useful tool

to rank and validate the variable significance so we may

have an idea which terms may be true positive.

One must use caution when applying LR in testing SNP–

SNP interactions. The limitations of variable selection in

LRs for testing SNP–SNP interactions have been widely

discussed.10,22,28,29 The primary limitation is the empty

cell-effect that some genotype combinations have low

frequency or zero responses. In an LR, two dummy

parameters are usually needed for each SNP and more

parameters are required for their interactions. As the

number of SNPs and/or the order of testing interaction

increases, the number of genotype combinations increases

and this empty-cell effect becomes severe. The maximum

likelihood estimate of LR coefficients may be invalid

because of the empty-cell effect. Secondly, the correlation

between SNPs can weaken power of variable selection in an

LR. Thirdly, the issue of genetic heterogeneity, in which an

identical or similar phenotype is caused by different

mutations, is not handled well by LR. The cluster analysis

was recommended to detect genetic heterogeneity before

detecting for SNP–SNP interactions.30

In this study, we can gain insight to the accuracy of the

commonly used 2-step variable selection procedure. The

APs in the commonly used 2-step selection were similar in

testing main effects but were much lower in testing

interactions compared with the stepwise selection without

the HWFR. The NPs in the two-step selection were greater

than the stepwise selection without the HWFR and the SC-

based selection. As the number of SNPs increases, an

appropriate two-step selection to narrow down the testing

terms before using LR to test gene–gene or gene-environ-

ment interactions is necessary.32 The common two-step

selection we tested in this study has limited power for the

interaction without main effects because the first stage

Table 2 Result of variable selection in the Consortium for the Longitudinal Evaluation of African-Americans with Early
Rheumatoid Arthritis study

P-value Bootstrap %

SNP (genotype grouping)a Stepwise, no HWFR AIC-based SC-based Two-step (1000 runs)

rs2395165 (TT, CT, CC) 0.0392 0.0392 F F 11.8
rs7747393 (CC, CT+TT) 0.0294 0.0294 F F 8.8
rs9268480*rs2239804 (CC, CT+TT)*(AA, AG, GG) o0.0001 o0.0001 0.0001 F 41.2
rs2076529*rs2239804 (AA, AG+GG)* (AA, AG, GG) F F F 0.0003 15.6

AICb 305.1 305.1 311.5 313.9 F
SCc 325.9 325.9 321.9 324.3 F

aReference genotype is in bold.
bAkaike information criterion. The lower value the better the model-fit.
cSchwarz criterion. The lower value the better the model-fit.
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only tests for main effects. Several two-stage methods have

been proposed.17,33

In conclusion, this study provided empirical evidence for

comparing variable selections in an LR. With limited

candidate SNPs, stepwise selection without the HWFR is a

better procedure for testing SNP–SNP interactions in an LR.

The bootstrap method is useful for validating variable

significance. Future research is needed for the issue of

sample size and number of SNPs in variable selection of an

LR and comparison of an LR with other statistical methods

in testing SNP–SNP interactions.
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