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Widely used statistical interaction models essentially treated the interaction effect as a residual term and
hence are likely to limit the power to detect interaction. Alternatively, interactions between two loci can be
understood as irreducible dependencies between loci causing disease or viewed as the linkage
disequilibrium (LD) between them. This motivated the development of LD-based statistics for the
detection of interaction between two loci. Although LD-based statistics have demonstrated high power to
detect interaction between two loci, in general, linkage phase information of marker loci for unrelated
individuals is unknown. To overcome this limitation, we classify the interaction between two loci into
intragametic interaction that characterizes interaction of two alleles from different loci on the same
haplotype and intergametic interaction that characterizes the interaction of two alleles from different loci
on different haplotypes. Then we show that intragametic and intergametic interaction will lead to the
corresponding intragametic and intergametic LD. This stimulates the use of composite measure of LD for
developing statistics to detect interaction between two unlinked loci. To study the validity of the
composite LD-based statistic for testing interaction, we estimate its type 1 error rates by simulation. To
evaluate the performance of the composite LD-based statistic for detection of interaction between two
loci, we compare its power with logistic regression and apply it to two real examples. The preliminary
results demonstrate that the composite LD-based statistic is a strong alternative to the logistic regressions
and the intragametic LD-based statistic for the detection of interaction between two unlinked loci.
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Introduction
It is increasingly recognized that common diseases are not

consequences of independent actions of the genes, but are

caused by complex joint actions of multiple genetic and

environmental risk factors. Gene–gene interactions play

an essential role in the ignition and development of the

diseases.1

Despite current enthusiasm for investigation of interac-

tions between genes, the essential issue of how to define

and detect gene–gene interaction remains unresolved.2 In

the past, statistical and biological interactions are often

defined separately. As Rothman et al3 pointed out, ‘The

term statistical interaction is intended to denote the

interdependence between the effects of two or more factors
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within the confines of a given model of risk’, and

‘Biological interaction may be defined as the interdepen-

dent operation of two or more causes to produce disease’. A

core part of statistical interaction is to specify statistical

models. Most popular models for statistical interactions

between genes are additive models that defined the effect

of gene interactions as a statistical deviance from the

additive effects of single genes in the linear models (or

logistic regression for qualitative traits) and were originally

proposed by Fisher4, and further developed into their

modern representations by Cockerham5 and Kempthorne.6

Statistical interaction models essentially treated the inter-

action effect as a residual term in genetic analysis,

and hence are likely to limit the power to detect the

interaction.

As an alternative to statistical interaction models,

interactions between two loci (or genes) can be understood

as irreducible dependencies between loci causing disease.7

The purpose of a new definition of interaction is to develop

a mathematical representation of biological interaction,

which is close to the true biological interaction. We use

penetrance of the risks to measure the degrees of the risks

in causing diseases. In a broad sense, the interaction

corresponds to the situation in which the effect of one

locus (gene) is affected by the presence or absence of the

other.8 – 10 The presence of interaction between two loci

implies that the two loci share something in common to

cause diseases (or phenotype). The shared common

features or information lead to the association of two loci

in the disease population, that is, high dependency or

correlation between two loci in the disease population. In

the language of population genetics, the dependency

between two loci corresponds to the linkage disequilibrium

(LD) between two loci. In other words, although LD

between two loci is not the interaction of the effects of

those alleles on a disease, LD can be used to detect

interaction. If we assume that the controls are sampled

from a single isolated population, two unlinked loci are in

linkage equilibrium in controls. However, the interaction

between two loci will generate LD in disease population.11

Therefore, we can use the difference in LD between

controls and cases to assess whether the interaction

between two unlinked loci is present or not. If we assume

that two loci are unlinked in the controls, in the presence

of interaction, we observe LD between two loci in the cases.

The level of LD due to interaction in the disease population

depends on the magnitude of interaction between two

loci. This motivated the development of statistics based on

deviations from linkage equilibrium in the cases for

detection of interaction between two loci.

Although LD-based statistics have demonstrated high

power to detect interaction between two loci, in general,

linkage phase information of marker loci for unrelated

individuals is unknown; only genotype data are available.

Experiments for generation of haplotype data are

expensive and time consuming. Estimation of haplotypes

based on genotype data inevitably incurs errors, which in

turn will lead to increasing false interaction positive

interaction in detection of interaction between two loci.12

The main purpose of this paper is to directly use unphased

genotypes to develop statistics for the detection of

interaction between two unlinked loci. Similar to the

Hardy–Weinberg disequilibrium at marker loci, which can

be used to develop an association test,13 the composite

measure of LD14 – 16 that uses the genotype data to estimate

the nonrandom association of alleles from different loci on

the chromosomes, which are from the same parent

(intragametic LD) and on the chromosomes, which are

fromdifferent parents (intergametic LD), was used to

design association tests allowing unknown linkage

phase.17 – 19 We extend the composite measure of LD to

test the interaction between two unlinked loci when

only genotype data are available. To achieve this, we first

develop a general theory to study intragametic and

intergametic LD patterns under two-locus disease models.

Then we develop a novel definition and measure of

intragametic interaction, which is caused by two interacted

alleles from unlinked loci on the same haplotype and

intergametic interaction, which is caused by two interacted

alleles from unlinked loci on different haplotypes. The

pattern of intragametic and intergametic LD between

two unlinked loci due to gene–gene interaction

provides a foundation for developing statistics for the

detection of interaction between two loci using genotype

data. This motivates us to develop the composite LD-based

statistics for testing interactions between two unlinked

loci. To study the validity of the composite LD-based

statistic for testing interaction, we estimate type 1 error

rates of the test statistic using simulation. To evaluate the

performance of the composite LD-based statistic for

detection of interaction between two loci, we compare its

power with logistic regression and apply it to two real

examples.

Methods
Measure of interaction between two loci

Let D1 and d1 be the two alleles at the first disease locus

with frequencies PD1
andPd1

, respectively. Let D2 and d2 be

the two alleles at the second disease locus with frequencies

PD2
andPd2

, respectively. Alleles D1 and d1 can be indexed

by 1 and 2, respectively. At the first disease locus, let

D1D1 be genotype 11, D1d1 be genotype 12 (or d1D1 be

genotype 21) and d1d1 be genotype 22. Thus, the genotypes

at the first disease locus can be indexed by ij. The

genotypes at the second disease locus are similarly defined

and can be indexed by kl. Two-locus genotypes are simply

denoted by ijkl for individuals carrying the genotype ij at

the first disease locus and kl at the second disease locus.

Let fijkl be the penetrance of the individuals with genotype
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ijkl. Let P11, P12, P21, and P22 be the frequencies of

haplotypes HD1D2
; HD1d2

; Hd1D2
andHd1d2

in the general

population, respectively. Let P11
A , P12

A , P21
A , and P22

A be their

corresponding haplotype frequencies in the disease

population. Let P1/1, P1/2, P2/1 and P2/2 be the frequencies

of HD1=D2
; HD1=d2

; Hd1=D2
andHd1=d2

; respectively, where the

slash denotes the two chromosomes in the individual,

which are from different parents. Let P1/1
A , P1/2

A , P2/1
A , and

P2/2
A be their corresponding frequencies of HD1=D2

; HD1=d2
;

Hd1=D2
andHd1=d2

in the disease population. Let PA
D1
; PA

d1
; PA

D2

andPA
d2

be the frequencies of the alleles D1, d1, D2, and d2 in

the disease population, respectively.

In general, it is genotypes that have penetrances. For ease

of discussion, we introduce a concept of haplotype

penetrance. Consider a haplotype with two alleles at the

different loci on the same chromosome. Then, the

penetrance of haplotype HD1D2
is defined as

h11 ¼ ½PD1D2

D1D2
f1111 þ 1

2
ðPD1D2

D1d2
f1112 þ PD1D2

d1D2
f1211

þ PD1D2

d1d2
f1212Þ�=P11

In other words, the penetrance of haplotype HD1D2
is

defined as the probability that individual with the

haplotype HD1D2
is affected. It is a weighted sum of the

penetrances that contain haplotype HD1D2
. The penetrance

h12, h21, and h22 is similarly defined.

The penetrance of two alleles at different loci on

different chromosomes HD1=D2
can be defined as

h1=1 ¼ ½PD1D2

D1D2
f1111 þ 1

2
ðPD1D2

D1d2
f1112 þ PD1D2

d1D2
f1211

þ Pd1D2

D1d2
f2112Þ�=P1=1:

It is a weighted sum of genotypic penetrances. Similarly, we

can define the penetrance h1/2, h2/1, and h2/2. If we assume

the Hardy–Weinberg equilibrium and genotypic equili-

brium in general population, then we have h11¼h1/1,

h12¼ h1/2, h21¼h2/1, and h22¼h2/2. Let dD1D2
¼ P11 � PD1

PD2

be the measure of intragametic LD that measures the

association of alleles from different loci on the same

haplotype17 and dD1=D2
¼ P1=1 � PD1

PD2
be the measure of

intergametic LD that measures the association of two

alleles from different loci on different haplotypes17 in the

general population. We can show that haplotype frequen-

cies in disease population can be expressed as

PA
11 ¼ P11h11

PA
;PA

12 ¼ P12h12

PA
; PA

21 ¼ P21h21

PA
;PA

22 ¼ P22h22

PA
; ð1Þ

and

PA
1=1 ¼

P1=1h1=1

PA
; PA

1=2 ¼
P1=2h1=2

PA
; PA

2=1 ¼
P2=1h2=1

PA
; PA

2=2

¼
P2=2h2=2

PA
; ð2Þ

where PA denotes disease prevalence.

Now we calculate the measures of intragametic and

intergametic LD in disease population under a general

two-locus disease model. The measures of intragametic and

intergametic LD in disease population are denoted by dAD1D2

and dAD1=D2
; respectively. We can show that they can be

given by

dAD1D2
¼ dD1D2

PA
h11 þ PD1

PD2

PA
ðh11 � hD1

hD2

PA
Þ ð3Þ

and

dAD1=D2
¼

dD1=D2

PA
h1=1 þ PD1

PD2

PA
ðh1=1 � hD1

hD2

PA
Þ ð4Þ

where hD1
¼ PðAffectedjD1Þ and hD2

¼ PðAffectedjD2Þ: We

define a measure of intragametic interaction that measures

the interaction of two alleles from different loci on the

same haplotype as Iint ra ¼ h11 � hD1
hD2

PA
and a measure of

intergametic interaction that measures the interaction of

two alleles from different alleles on the different haplo-

types as Iint er ¼ h1=1 � hD1
hD2

PA
7: Then a measure of total

interaction between two loci, which consists of intraga-

metic and intergametic interaction is given by

I ¼ Iint ra þ Iint er ð5Þ

Equation clearly shows that the interaction between two

loci is defined by the penetrance of the two loci. Although

the penetrance of the risks is not directly related to the

biological process, it is related to the causes of the disease.

Therefore, the above definition of interaction may have

something to do with biological interaction. It follows

from equations (3–5) that the composite measure of LD,

DA
D1D2

(Weir 1996) in disease population is given by

DA
D1D2

¼ dAD1D2
þ dAD1=D2

¼ dD1D2

PA
h11 þ

dD1=D2

PA
h1=1 þ PD1

PD2

PA
I ð6Þ

Absence of interaction between two loci is then defined as

h11 ¼ hD1
hD2

PA
or

h11

PA
¼ hD1

PA

hD2

PA
;h1=1 ¼ hD1

hD2

PA
or

h1=1

PA

¼ hD1

PA

hD2

PA
ð7Þ

equation (7) indicate that similar to linkage equilibrium

where frequency of a haplotype is equal to the product of

the frequencies of the component alleles of the haplotype,

absence of interaction between two loci implies that the

proportion of individuals carrying two alleles (either in the

same chromosome or in the different chromosome) in the

disease population is equal to the product of proportions of

individuals carrying single allele in the disease population,

if we assume that the disease is caused by only two

investigated disease loci. In other words, the interaction
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between two disease susceptibility loci occurs when the

contribution of one locus to the disease depends on

another locus. In contrast to additive model for interac-

tion, which was introduced by Fisher4, the interaction

model defined by equations (5 and 7) are referred as to a

multiplicative interaction model.

Indirect interaction between two unlinked marker
loci

In the previous section, we studied interaction between

two unlinked disease loci. Now we consider two marker

loci, each of which is in LD with either of the two

interacting loci. Assume marker M1 is in LD with disease

locus D1 and marker M2 is in LD with disease locus D2.

Furthermore, we assume that two disease loci D1 and D2 are

unlinked. Let dAM1M2
and dAM1=M2

be the measures of intraga-

metic and intergametic LD between two marker loci in the

disease population, respectively. We denote the composite

measure of LD between two marker loci by DA
M1M2

: Let di be

the LD measure between marker Mi and disease locus Di

(i¼1,2) in the general population. Then, we can show that

(Appendix A)

highlight7DeltaAM1M2
¼ dAM1M2

þ dAM1=M2

¼ d1d2

PD1
PD2

Pd1
Pd2

DA
D1D2

ð8Þ

It is clear that when the marker loci are the disease loci

themselves, DA
M1M2

; dAM1M2
and dAM1=M1

are reduced to DA
D1D2

;

dAD1D2
and dAD1=D2

. equation (8) can also be written in terms

of the measure of interaction between two unlinked loci

DA
M1M2

¼ d1d2

PAPd1
Pd2

I ð9Þ

Since di 	 PDi
Pdi ; the absolute value of the LD measure

between two unlinked marker loci in the disease popula-

tion, for example, the composite measure of LD between

two marker loci jDA
M1M2

j; will be less than or equal to the

absolute value of the composite measure of LD between

two unlinked disease loci in the disease population.

Test statistic

In the previous section, we showed that under the

multiplicative disease model, interaction between

unlinked loci will create LD. Intuitively, we can test

interaction by comparing the difference in the composite

genotypic disequilibrium between two unlinked loci

between cases and controls. Precisely, if we denote the

estimators of the composite LD measures in cases and

controls by D̂A and D̂N , respectively, then the test statistic

can be defined as

TI ¼
ðD̂A � D̂NÞ2

VarðD̂AÞ þ VarðD̂NÞ
ð10Þ

where

D̂A ¼P̂A
11 þ P̂A

1=1 � 2P̂A
D1
P̂A
D2
;

D̂N ¼P̂N
11 þ P̂N

1=1 � 2P̂N
D1
P̂N
D2
;

VarðD̂AÞ ¼
1

nA
½p̂AD1

þ d̂AD1
Þðp̂AD2

þ d̂AD2
Þ

þ1

2
t̂AD1

t̂AD2
D̂A þþt̂AD1

d̂AD1D2D2
þ t̂AD2

d̂AD1D1D2
þ D̂A

D1D1D2D2
�;

VarðD̂NÞ ¼
1

nG
½p̂ND1

þ d̂ND1
Þðp̂ND2

þ d̂ND2
Þ þ 1

2
t̂ND1

t̂ND2
D̂N þþt̂ND1

d̂ND1D2D2

þt̂ND2
d̂ND1D1D2

þ D̂N
D1D1D2D2

�

p̂AD1
¼P̂A

D1
ð1 � P̂A

D1
Þ; p̂AD2

¼ P̂A
D2
ð1 � P̂A

D2Þ;

d̂AD1
¼P̂A

D1D1
� ðP̂A

D1
Þ2; d̂AD2

¼ P̂A
D2D2

� ðP̂A
D2
Þ2;

t̂AD1
¼ð1 � 2P̂A

D1
Þ; t̂AD2

¼ ð1 � 2P̂A
D2
Þ;

d̂AD1D1D2
¼P̂A

D1D1D2
� P̂A

D1
D̂A � P̂D2

d̂AD1
� ðP̂A

D1
Þ2P̂A

D2

d̂AD1D2D2
¼P̂A

D1D2D2
� P̂A

D2
D̂A � P̂D1

d̂AD2 � ðP̂A
D2
Þ2P̂A

D1
;

D̂A
D1D1D2D2

¼P̂A
D1D1=D2D2

� 2P̂A
D

1
d̂AD1D2D2

� 2P̂A
D2
d̂D1D1D2

� 2P̂A
D1
P̂A
D2
D̂A

�ðD̂AÞ2 � ðP̂A
D1
Þ2d̂AD2

� ðP̂A
D2

Þ2d̂AD1
� d̂AD1

d̂AD2
� ðP̂A

D1
P̂A
D2
Þ2

p̂ND1
; p̂ND2

; t̂ND1
; t̂ND2

; d̂ND1
; d̂ND2

; d̂ND1D2D2
; d̂ND1D1D2

and D̂N
D1D1D2D2

are

similarly defined for controls, the formula for calculations

of the composite measure of LD in cases and controls is

given in Weir (1996),15 PA
11;P

A
1=1; P

A
D1
; PA

D2
; PN

11P
N
1=1;P

N
D1

and

PN
D2

are defined as before, P̂A
11
; P̂A

1=1; P̂
A
D1
; P̂A

D2
; P̂N

11
P̂N

1=1; P̂
N
D1

and

P̂N
D2

are their estimators, the quantities nA and nG denote

the number of sampled individuals in cases and controls,

respectively; the variance of the composite LD measure was

the large-sample variance.15 Under the null hypothesis and

assumption of the Hardy–Weinberg equilibrium, the

variance of the composite measure of LD in cases and

controls becomes VarðD̂AÞ ¼
p̂A
D1

p̂A
D2

nA
and VarðD̂NÞ ¼

p̂N
D1

p̂N
D2

nG
:

When sample size is large enough to ensure application

of large sample theory, test statistic TI is asymptotically

distributed as a central w(1)
2 distribution under the null

hypothesis of no interaction (both intragametic and

intergametic interactions) between two unlinked loci and

assumption of the Hardy–Weinberg equilibrium.

In theory, we can use case only design to study

interaction between two loci. However, in practice, back-

ground LD between two unlinked loci may exist in the

population due to many unknown factors. Therefore, the

test statistic based on case–control design is more robust

than the statistic based on case only design.

Results
Type 1 error rates of test statistics

To examine the validity of the statistic for testing

interaction, we performed a series of simulation studies.

The computer program SNaP20 was used to generate two-

locus genotype data of the sample individuals. A total of

20 000 individuals, who were equally divided into cases

and controls were generated in the general population,
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assuming genotypic equilibrium (both intragametic and

intergametic equilibria) between two loci. We randomly

sampled 100–400 individuals from each of the cases and

controls for the calculation of the type I error rates. A total

of 10 000 simulations were repeated. Table 1 shows that the

estimated type I error rates of the statistic TI for testing the

interaction between two unlinked loci were not appreci-

ably different from the nominal levels a¼0.05, a¼0.01

anda¼0.001.

Power evaluation

To evaluate the performance of the composite LD-based

statistic in testing gene–gene interaction, we compared the

power of the statistic employing composite measure of the

LD to that of the logistic model. We use the genotype

coding scheme in QUANTO21 for power calculations.

Specifically, we considered two types of genotype coding

(genetic covariate variables). For a dominant model,

homozygous wild type, heterozygous, and homozygous

mutant genotypes were coded as 0, 1, and 1, respectively.

For an additive model, they were coded as 0, 1, and 2,

respectively. We considered two loci, denoted as G and H,

respectively. We assume the following logistic model:

PðD ¼ 1jG;HÞ ¼ eaþbgGþbhHþbghGH

1 þ eaþbgGþbhHþbghGH

where ORb ¼ ea

1þea is the baseline probability of disease in

the population,

ORG ¼ ebg ;ORH ¼ ebh andORGH ¼ ebgh

are the odds ratios for G when H¼ 0, H when G¼ 0 and

interaction G
H, respectively.21 Power for both composite

LD-based statistic and logistic regression22 was calculated

by simulation. The computer program SNaP20 was used to

generate 10 000 cases and 10 000 controls with unlinked

two-locus genotype data. Two-locus interaction effect were

simulated for two-locus dominant and additive models

with penetrance functions as given in Gauderman

(2002).21 Five hundred individuals were randomly sampled

from each of the cases and controls. A total of 10 000

simulations were repeated. Figures 1a and 1b present the

power comparisons between the logistic regression model

and the composite LD-based statistic under the following

two genetic interaction models: dominance
dominance

and additive
 additive. Figures 1a and 1b show that the

power of both logistic regression and the composite LD-

based statistic in detecting gene–gene interaction was an

increasing monotonic function of the interaction odds

ratio, a widely used measure in quantifying the strength of

interaction between two loci. This implies that the

proposed new interaction measure and test statistic are

closely related to the traditional interaction measure. We

can also see that the power of the composite LD-based

Table 1 Type 1 error rates of the test statistic TI to test
interaction between two unlinked loci in a homogenous
population

Nominal levels

Sample size a¼0.05 a¼0.01 a¼0.001

100 0.0545 0.0133 0.0012
150 0.0509 0.0105 0.0011
200 0.0511 0.0112 0.0013
250 0.0480 0.0101 0.0008
300 0.0530 0.0100 0.0011
350 0.0510 0.0110 0.0010
400 0.0472 0.0091 0.0012
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Figure 1 (a) Power of the test statistic TI and logistic regression
analysis as a function of interaction odds ratio (ORGH ¼ ebgh ) under a
dominance
dominance model, assuming risk allele frequencies at
both loci G and H are 0.2, number of individuals in both cases and
controls are 500, population risk is 0.001, significance level is 0.001,
and genetic odds ratios RG¼1 and RH¼1. (b) Power of the test statistic
TI and logistic regression analysis as a function of interaction odds ratio
(ORGH ¼ ebgh ) under an additive
 additive model, assuming risk allele
frequencies at both loci G and H are 0.2, number of individuals in both
cases and controls are 500, population risk is 0.001, significance level is
0.001, and genetic odds ratios RG¼1 and RH¼1.
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statistic TI is higher than that of the logistic regression

model.

Application to real data examples

To further evaluate its performance for detecting interac-

tion between two unlinked loci, the proposed test statistic

TI was applied to two real examples. The first example was

a breast cancer case–control study. A total of 398

Caucasian breast cancer cases and 372 matched controls

were sampled from the Ontario Familial Breast Cancer

Registry (OFBCR).23 Nineteen SNPs from 18 key genes in

DNA repair, cell cycle, carcinogen/estrogen metabolism,

and immune system were typed. All SNPs were in Hardy–

Weinberg equilibrium. Using multivariate logistic analysis

under the codominant models, four pairs of genes: XPD

and IL10, GSTP1 and COMT, COMT and CCND1, and

BARD1 and XPD showed significant interactions.23 We

used the statistic TI to test interactions between these four

pairs of genes. The test results are summarized in Table 2,

where the crude P-values were from the Table 4 in the

paper by Onay et al (2006).23 The crude P-values were

obtained from multivariate logistic regression analysis that

includes all main effects and only the interaction of

interest under the codominant models. As shown in Table 2,

logistic regression analysis interactions between XPD-

(Lys751Gln) and IL10-(G(-1082)A), BARD-(Pro24Ser) and

XPD-(Lys751Gln), COMT-(Met108/158Val) and CCND1-

(Pro24Pro) and GSTP1-(Ile241Val), and COMT-(Met108/

158Val) were identified. But after the more conservative

Bonferroni adjustment, none of these interactions were

significant.23 Table 2 demonstrated that the P-values based

on the test statistic TI were smaller than those based on

the traditional logistic regression analysis for the XPD-

(Lys751Gln) and IL10-(G(1082)A), but larger for the

BARD1-(Pro24Ser)and XPD (Lys751Gln), and COMT-

(Met108/158Val) and CCND1 (Pro241Pro).

A popular point of view is that the statistics using

haplotype data usually have smaller P-values than the

statistics using genotype data. To examine this statement,

the second example is coronary heart disease study in

Shaghai, China in which 812 SNPs in 176 genes were typed

for 1320 cases and 1129 controls. Atherosclerosis is the

primary cause of coronary heart disease.24,25 Although a

majority of the results demonstrate that the P-values of

intragametic LD-based statistic is smaller than that of

composite LD-based statistic (data not shown), we can still

find many pairs of SNPs for which the P-values of the

composite LD-based statistic are smaller than that of the

intragametic LD-based statistic and logistic regression.

Here, we report the results of the detected interactions

between 10 pairs of SNPs in Table 3. In Table 3, we can see

that for all 10 pairs of SNPs, the P-values of the composite

LD-based statistic are smaller than those of the intraga-

metic LD-based statistic. This indirectly shows that there

may exist intragametic and intergametic interactions,

which generate intragametic and intergametic LD, respec-

tively. The composite LD is the summation of intragametic

and intergametic LD. When both intragametic and inter-

gametic LD have the same sign, the absolute value of

composite LD is larger than that of its component.

Table 2 Comparison of P-values for testing gene-gene interactions (example 1)

P-values obtained by

Pair of interactions Logistic regressiona Composite LD-based statistic

XPD-(Lys751Gln) and IL10-(G(1082)A) 0.035 0.0046
BARD1-(Pro24Ser)and XPD (Lys751Gln) 0.024 0.7038
COMT-(Met108/158Val) and CCND1 (Pro241Pro) 0.010 0.9945
GSTP1-(Ile105Val) and COMT (Met108/158Val) 0.036 0.0075

aP-values reported by Onay et al (2006).23

Table 3 P-values for testing interaction between unlinked loci in CAD study (example 2)

P-values

SNP1 Gene SNP2 Gene TI haplotype TI genotype Logistic

rs1511024 FABP2 rs10916683 PLA2G2A 8.07E�02 2.02E�05 5.07E�01
rs1267857 F13A1 rs2071397 GLA 6.72E�04 7.54E�05 3.28E�01
rs2612103 ENOS rs2515901 GLA 1.73E�04 3.57E�05 9.30E�02
rs2479412 PCSK9 rs2071228 GLA 9.94E�03 6.77E�05 3.69E�01
rs5194 AGTR2 rs4149026 SLCO1B1 5.77E�04 9.80E�05 6.61E�01
rs17014553 GSTM5 rs2515901 GLA 1.27E�04 2.28E�05 2.88E�04
rs3829462 LIPC rs1126535 CD40L 1.60E�04 1.08E�05 1.95E�02
rs3821664 P2RY12 rs2280964 CXCR3 1.60E–04 5.02E–05 2.51E–02
rs4963516 GNB3 rs1126535 CD40L 1.3E–05 1.44E–06 1.13E–03
rs12990449 LRP1B rs12840631 AGTR2 3.66E–04 2.60E–05 7.82E–01
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Therefore, in this case the P-values of the composite LD-

based statistic will be smaller than those of the intraga-

metic LD-based statistic.

Discussion
For almost a century, interaction between loci is defined

as a deviance from the summation of their genetic main

effects of individual locus. As an alternative to additive

model of interaction, we have shown that the interaction

between loci can be interpreted as irreducible dependen-

cies between them. In genetics, dependencies between

loci can be understood as LD If two loci in the general

population are in linkage equilibrium (or independent),

their departure from equilibrium in the disease population

is often attributed to the interaction between them.

Therefore, the LD due to interaction between two loci

can be used to measure the magnitude of interaction.

The most popular measure of LD is the intragametic LD

measure that quantifies nonrandom association of two

alleles from different loci on the same haplotype. The

major limitation of using the intragametic LD measure to

test for interaction is that in practice, haplotype data are

often unavailable. Although a number of algorithms for

estimation of haplotypes have been developed, the errors

of haplotype estimation are inevitable. This will lead to

inaccuracy in the detection of interactions between loci. To

overcome this limitation, we proposed to use the compo-

site measure of LD based on genotype data for detection of

interactions between loci.

To gain a deep understanding of intragametic and

intergametic interactions, we first developed the general

theory to study composite LD patterns in the disease

population under two-locus disease models. We introduced

a new concept of intragametic and intergametic pene-

trance and developed a measure of interaction between

two unlinked loci, including both intragametic and

intergametic interactions. The theoretic analysis of the

intragametic and intergametic LD motivated us to use a

composite measure of LD for developing statistics to test

interactions.

We examined the distribution of the composite LD-based

statistic under the null hypothesis of no interaction and

calculated type 1 error rates of the proposed statistic by

simulation. Our results showed that type 1 error rates were

close to nominal significance levels. The composite

LD-based statistic has two remarkable features. First, the

calculation of the composite LD-based statistic does not

require linkage phase information. Therefore, the results of

the composite LD-based statistic are more reliable than that

of the intragametic LD-based statistic. Second, the power of

the composite LD-based statistic may not always be less

than that of the intragametic LD-based statistic. Although

by simulation we showed that in general, the composite

LD-based statistic under the dominant and additive two-

locus disease models has higher power than the logistic

regressions, the critical question is whether there are

situations where the composite LD-based statistic has

higher power than the traditional LD (intragametic LD)-

based statistic. The preliminary results of real data analysis

showed that in some cases, P-values of the composite LD-

based statistic may be smaller than those of the intraga-

metic LD-based statistic. equations (6 and 10) show that in

theory, the composite LD-based statistic varies from half of

the intragametic LD-based statistic to two times of the

intragametic LD-based statistic depending on the ratio of

the intergametic LD over the intergametic LD. Therefore,

when the intergametic LD is comparable with the intraga-

metic LD, the composite LD-based statistic may have

higher power than the intragametic LD-based statistic.

Although the composite LD-based statistic has merit, it

also has potential limitations. First, in addition to interac-

tion, HWD may also increase the composite LD. The small

P-values of the composite LD-based statistic may be caused

by HWD, not by the interaction. Although this will not be

a problem for association studies of two loci with the

disease, but it will be the problem for gene–gene interac-

tion analysis. Second, like other population-based meth-

ods, the population substructure may generate LD and

hence create spurious interactions. Third, the presented

methods in this report require that the two loci are

unlinked.

In summary, our results suggest that the composite

LD-based statistic is an alternative to the traditional logistic

regression or the haplotype-based LD statistics.
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Appendix A
Assume that marker locus M1 has two alleles M1 and m1,

and the marker locus M2 has two alleles M2 and m2. Let

qAM1
and qAM2

be the frequencies of the marker alleles M1 and

M2 in the disease population, respectively. Let the frequen-

cies of the haplotypes D1M1, D1m1, d1M1 and d1m1 be

PD1M1
; PD1m1

; Pd1M1
and Pd1m1

; respectively. The frequencies of

the haplotypes D2M2, D2m2, d2M2, and d2m2 can be

similarly defined. Let the frequencies of the haplotypes

M1M2, M1m2, m1M2, and m1m2 in the disease population be

q11
A , q12

A , q21
A , and q22

A , respectively. Then, we have

qA11 ¼PðM1M2jAÞ

¼PðM1M2;AÞ
PA

¼
PD1M1

PD2M2
h11 þ PD1M1

Pd2M2
h12 þ Pd1M1

PD2M2
h21 þ Pd1M1

Pd2M2
h22

PA

¼PM1
PM2

þ
PM2

ðhD1
�hd1

Þd1 þPM1
ðhD2

� hd2
Þd2 þ ðh11 � h12 � h21 þ h22Þd1d2

PA

ðA1Þ
Similarly, we have

qAM1
¼ PM1

þ hD1
� hd1

PA
d1

qAM2
¼ PM2

þ hD2
� hD1

PA
d2 ðA2Þ

Note that

hD1
¼PðD1D2;AffectedÞ þ PðD1d2;AffectedÞ

PD1

¼PD2
h11 þ Pd2

h12;

hD2
¼PD1

h11 þ Pd1
h21;

hd1
¼PD2

h21 þ pd2
h22;

hd2
¼PD1

h12 þ Pd1
h22:

ðA3Þ

It follows from equation (A3) that

hD1
hD2

¼PD1
PD2

h2
11 þ Pd1

PD2
h11h21 þ PD1

Pd2
h11h12 þ Pd1

Pd2
h12h21

¼h11PA þ Pd1
Pd2

ðh12h21 � h11h22Þ

Similarly, we have

hD1
hd2

¼h12PA þ Pd1
PD2

ðh11h22 � h12h21Þ
hd1

hD2
¼h21PA þ PD1

Pd2
ðh11h22 � h12h21Þ

hd1
hd2

¼h22PA þ PD1
PD2

ðh12h21 � h11h22Þ
ðA4Þ

From equations (A2–A4) we obtain that

qAM1
qAM2

¼ PM1
PM2

þ
PM2

ðhD1
� hd1

Þ
PA

d1 þ
PM1

ðhD2
� hd2

Þ
PA

d2

þ h11 � h12 � h21 þ h22

PA
� h11h22 � h12h21

P2
A

� �
d1d2

ðA5Þ
Thus,

dAM1M2
¼qA11 � qAM1

qAM2

¼ 1

PAPd1
Pd2

h11 � hD1
hD2

PA

� �
d1d2

ðA6Þ

Similarly, we have

dAM1=M2
¼qA1=1 � qAM1

qAM2

¼ 1

PAPd1
Pd2

h1=1 � hD1
hD2

PA

� �
d1d2

ðA7Þ

Combining equations (A6 and A7) yields

DA
M1M2

¼ d1d2

PAPd1
Pd2

I

¼ d1d2

PD1
PD2

Pd1
Pd2

DA
D1D2

:
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