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Empirical assessment of the validity of the
‘fundamental theorem of the HapMap’ in the light of
‘cryptic’ tagging of multiple susceptibility loci
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Underestimation of the sample size needed to detect genetic association may occur as a result of
deviations from the ‘fundamental theorem of the HapMap’. A biologically plausible mechanism that might
cause this deviation is ‘cryptic’ tagging of multiple susceptibility loci by the same neutral marker. For
complex disorders, the existence of multiple susceptibility loci on the same chromosome is probably the
rule rather than the exception. Our results show that conditional on the known haplotype structure of the
genome the probability that a tagging SNP that is in linkage disequilibrium (LD) with a susceptibility gene
is also in LD with another susceptibility gene is not negligible. Consequently, we were able to estimate the
extent and the prevalence of the bias in the necessary sample size to find association induced by ‘cryptic’
tagging. In general, the underestimation of the necessary sample size is modest: 5% of all association
studies will underestimate the sample size by 5–30%. On the basis of our results, a safe bet is to use a
sample that is 10% larger than otherwise deemed necessary.
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Introduction
Genetic association studies rely by design on the presence

of linkage disequilibrium (LD) between the yet unknown

susceptibility locus and the neutral markers that have been

genotyped. LD describes the nonindependence of alleles

segregating at two or more loci. The sample size necessary

to detect the susceptibility locus by studying a nearby

neutral marker is supposed to be inflated by the inverse 1/r2

of the LD r2 between them. For instance, if r2 between

marker and susceptibility locus is 0.5, then the sample size

needed to achieve the same power would be twice as large.1

This concept of genetic association has recently been

named ‘the Fundamental Theorem of the HapMap’ and

received criticism based on theoretical grounds.2 The main

issue raised is that r2 is not necessarily multiplicative across

multiple loci. It is commonly assumed that given three

subsequent loci A, B and C, LD between A and C is the

product of LD between AB and BC: rAC¼ rAB� rBC. Terwilliger

and Hiekkalinna (T&H) correctly pointed out that this

relationship does not need to hold.

As has been suggested before, genetic heterogeneity is a

plausible biological mechanism for the lack of multi-

plicity.3 If the genotyped marker A is in LD with two

different susceptibility loci (B and C), which cause disease

D, then the multiplicativity of r2 will not hold

(rAD¼ rAB� rBD and rAD¼ rAC� rCD). Hence, an important

issue with respect to the feasibility of LD-based gene

mapping in the light of the critique by T&H is to determine
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how often we might expect that any given neutral marker

that truly tags a susceptibility locus also tags another. T&H

show that underestimation of the necessary sample size for

an association study as a result of deviation from the

multiplicativity of r2 is possible. Here, we aim to assess

from the HapMap data itself how probable this deviation

is, assuming that ‘cryptic’ tagging of multiple susceptibility

loci is the predominant biological cause of this effect and

an additive model for penetrance.

Theory
Testing for association is equivalent to testing if the

correlation between the tagging SNP (T) and disease status

(Ca) is equal to 0. Under the standard assumption that T

is independent of Ca conditional on a disease locus D

with one ‘healthy’ and susceptibility allele, the correlation

between T and Ca is given by the familiar expression

rT ;Ca ¼ rT ;DrD;Ca ð1Þ

Here, we explore a biologically plausible scenario that could

cause a deviation from this ‘multiplicativity of the correla-

tion’: the situation where multiple correlated disease loci

affect the phenotypic outcome.

Assume that there are kZ1 disease loci, and let D denote

a haplotype at these loci. Assume that all disease loci are

biallelic, with one variant a disease allele and the other a

healthy allele, and let #D denote the number of loci among

the k loci in D that carry the disease variant. Assume that,

for some numbers a and b,

pCajD � aþ ð#DÞb ð2Þ

This corresponds to an ‘additive model’ in which every

disease allele adds an amount b to the penetrance.

According to this formula, the prevalence is

pCa ¼
X
D

pCajDpD ¼ aþ b
X
D

ð#DÞpD ¼ aþ bEð#DÞ ð3Þ

for E(#D) the average number of disease alleles of an

individual in the population. Provided the second term

bE(#D) is small, the parameter a can be approximately

interpreted as the prevalence.

Let Di be the event that an individual has the disease

allele at the disease locus i (with the other loci unspecified,

so that Di is a union of certain haplotypes D), and

correspondingly let pDi
be the marginal frequency of the

disease allele at locus i. We prove in the appendix that,

under the additive model (2)

rT;Ca �
Xk
i¼1

rCa;Di
rT;Di

1

1þ
P
j¼i

rDi;Dj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pDj

ð1� pDj
Þ=pDi

ð1� pDi
Þ

q
ð4Þ

This formula is exact if the additive model (2) is exact. If

the allele frequencies pDi
are equal, then the square root in

the formula is 1 and disappears, and, moreover, (under (2))

the correlations rCa;Di
are equal. The formula then simplifies

to

rT ;Ca � rCa;D1

Xk
i¼1

rT;Di

1

1þ
P
j¼i

rDi;Dj

The correlations rDi ;Dj
here refer to the association of the

disease loci in the population (and not linkage). For two

disease loci (k¼ 2), the formula becomes

rT;Ca � rCa;D1

rT ;D1
þ rT;D2

1þ rD1;D2

In comparison with formula (1) for the one-locus model,

this exhibits the additional multiplication factor

D ¼ 1þ rT;D2
=rT ;D1

1þ rD1 ;D2

This factor quantifies the bias introduced in the correlation

between T and Ca, hence in the necessary sample size to

detect association, due to cryptic tagging. When the two

disease loci are not correlated and T does not tag D2, this

factor reduces to 1. However, when the two disease loci are

indeed correlated and both are tagged by T, D can still

reduce to 1 if the multiplicativity of the correlation

coefficients, which is not assumed, does hold: if rT ;D2
¼

rT;D1
�rD1;D2

, then D¼1. In all other cases, cryptic tagging

will introduce a bias in the necessary sample size to detect

association equal to the inverse of D2.

HapMap data
D is a function of the three pairwise correlation coefficients

between tagging SNP and both disease loci. The frequency

distribution of these correlation coefficients can be esti-

mated from the phased genotype data available from the

HapMap project (http://www.hapmap.org/downloads/index.

html.en). For this analysis, we used data from the CEU

population.

As the distribution of LD may differ between chromo-

somes and between SNPs of different minor allele

frequency (MAF), we considered each chromosome indivi-

dually and used five different bins of MAF in the analysis.

SNPs with MAF of 5–10, 10–20, 20–30, 30–40 and

40–50% were considered separately. All SNPs on a chromo-

some that fall in a given MAF bin were ascertained and two

were chosen randomly. These represent the susceptibility

loci D1 and D2. Next, the extent of LD was determined

between the D1 locus and all other SNPs on the chromo-

some. One SNP was randomly picked conditional on it

being in LD with the D1 locus with an r2 larger than 0.8.

This is the tagging SNP T, which tags D1 and may or may

not, depending on the haplotype structure of the genome,

tag D2. With the three SNPs D1, D2 and T chosen in this

manner, the three pairwise correlation coefficients were

calculated and D determined. This procedure was repeated
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1000 times for each chromosome and MAF–bin combina-

tion to generate a genome-wide distribution of D.
We did not find any systematic differences in the

locations of the distribution of D2 between chromosomes

(Kruskal–Wallis test), but the more rare SNPs showed a

visible concentration around 1 (Figure 1) (shape difference

confirmed by Kolmogorov–Smirnov test, Po0.001). The

observed values of D2 ranged between 0.00018 and 1.63.

This large range is in line with the theoretical prediction of

T&H that the upper limit for the necessary sample size

to detect association when multiplicativity of r2 is not

assumed includes infinity. However, the percentiles of the

distribution of D2 show that the extreme values are rare. In

95% of our data, D2 lies between 0.92 and 1.09 and except

for one case D2 did not reach below E0.7. (The 0.1, 0.5, 1,

2, 2.5, 3, 4, 5, and 97.5 percentiles were equal to 0.79, 0.86,

Figure 1 Distribution of the bias parameter D2. The value of D2 is given on the vertical scale. Shown are scatterplots for the five MAF classes
described in the text for each of the 22 autosomes.
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0.88, 0.91, 0.92, 0.93, 0.94, 0.95, and 1.09, respectively.)

We also explored other scenarios (with the two disease

loci chosen either randomly with respect to minor allele

frequency or ascertained such that one would have

MAFE0.1 and the other MAFE0.4), but the distribution

of D2 was similar to the one described above (data not

shown). In conclusion, more than 5% of all association

studies would need 5–30% larger sample sizes to achieve

the same power.

Incidentally, the lowest value of D2 involved a pair of

common alleles on chromosome 17. The correlation

coefficients were rT;D1
¼ �0:9, rT;D2

¼ 0:9 and rD1 ;D2
¼ �0:83,

representing a situation where the susceptibility allele at

one locus is in fairly strong LD with the healthy allele at

the other locus while the tagging SNP tags both loci

equally. In such a rare, worst case scenario, detecting

association through tagging is virtually impossible, even

under our additive model (2).

Discussion
In this paper, we empirically assess the deviation from the

HapMap theorem induced by cryptic tagging of multiple

susceptibility loci by a neutral SNP. This scenario seems the

most likely biological mechanism that might result in the

nonmultiplicativity of r2. Conditional on the haplotype

structure of the genome, a tagging SNP in LD with one

susceptibility locus might also exhibit high levels of LD

with another susceptibility locus. In fact, this paper

identifies this distribution of r2 values between a tagging

SNP and a randomly placed second ‘susceptibility’ locus on

the basis of the CEU HapMap data, under an additive

model for penetrance. In agreement with T&H, we find

that nonmultiplicativity of r2 can indeed decrease the

power of an association study, but show that this bias

introduced by cryptic tagging is relatively modest. We did

observe one instance where cryptic tagging would have

completely abolished the power of an association test

through a tagging SNP, as predicted by T&H. However, this

scenario is extremely rare as long as susceptibility loci do

not tend to be colocalized in the genome. If that were the

case, underestimation of the necessary sample size owing

to cryptic tagging would be much more severe. As also

other mechanisms than the one analyzed here might

account for the nonmultiplicativity of r2, some caution in

designing genome-wide association studies seems to be in

place. On the basis of these results, a safe bet is to use a

sample size that is 10% larger than otherwise deemed

necessary.
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Appendix
Derivation of formula (4)

For two events A and B, let pA, pB and pAB be the

probabilities of A, B and A-B, and let rAB be the correlation

between the indicators 1A and 1B (defined as 1 or 0 whether

the event occurs or not), that is,

rAB ¼ pAB � pApBffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pAð1� pAÞpBð1� pBÞ

p
We assume that the allele at the tagging locus T of a

randomly selected individual is conditionally independent

of the case–control status Ca given the haplotypes (or

genotypes) at the disease loci. Let D denote all possible

haplotypic alleles at the joint disease loci, and let DAD

denote the event that a random individual possesses allele

D (possibly a multi-locus haplotype). Then, it follows from

the general result, listed as Lemma 1 at the end of this

section, that

rT ;Ca ¼
X
D2D

ð1� pDÞrT;DrD;Ca ðA:1Þ

This exhibits the root-noncentrality parameter as a linear

combination of the root-noncentrality parameters rD,Ca of

the tests of the 2�2 tables that would score case–control

status versus causal haplotype, for each haplotypic allele

DAD in turn. In its generality, formula (A.1) is only mildly

interesting. However, under special assumptions, it turns

into easily interpretable formulas.

As a first application, if there are only two possible alleles

at the disease loci, say D and d, then sum (A.1) has two

terms, and the products of correlations in the two terms are

equal (rT,DrD,Ca¼ rT,drd,Ca), because both correlations

change by a minus sign upon replacing D by d. Then, the

formula reduces to the multiplicity (1).

Secondly, we derive (4) from (A.1) under assumptions (2)

and (3). It follows from the latter pair of assumptions that

rD;Ca ¼
ðpCajD � pCaÞpDffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pCapCopDð1� pDÞ

p � ð#D� Eð#DÞÞbpDffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pCapCopDð1� pDÞ

p
Substitution in formula (A.1) yields

rT;Ca �
X
D

ð1� pDÞrT;Dð#D� Eð#DÞÞbpDffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pCapCopDð1� pDÞ

p
¼
X
D

covð1T ; 1DÞð#D� Eð#DÞÞbffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pTptpCapCo

p

¼ bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pTptpCapCo

p covð1T ;
X
D

1Dð#D� Eð#DÞÞÞ

Here E(#D) can be deleted, because
P

D 1D ¼ 1 and hence

is uncorrelated with any variable, and
P

D ð#DÞ1D can be
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rewritten as
Pk

i¼1 1Di
for Di the event that an individual has

the disease allele at the disease locus i (with the other loci

unspecified). Thus, we obtain

rT;Ca �
bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

pCapCo
p

Xk
i¼1

rT ;Di

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pDi

ð1� pDi
Þ

q
ðA:2Þ

Next we eliminate b from this formula by expressing this in

the correlations rCa;Di
. We have

pCajDi
¼

X
D

pCajDpDjDi
¼ aþ

X
D

bð#DÞpDjDi
¼ aþ bEð#DjDiÞ

for E(#D|Di) the expected total number of disease alleles in

an arbitrary individual carrying the disease allele at locus i.

Combining this with formula (3) for the prevalence, we see

rCa;Di
¼

ðpCajDi
� pDi

Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pCapCopDi

ð1� pDi
Þ

p ¼ b
ðEð#DjDiÞ � Eð#DÞÞ ffiffiffiffiffiffiffi

pDi

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pCapCoð1� pDi

Þ
p

Solving for b and substituting the solution in (A.2), we find

that

rT ;Ca �
Xk
i¼1

rCa;Di
rT;Di

1� pDi

Eð#DjDiÞ � Eð#DÞ ðA:3Þ

The total number of disease alleles in a random individual

can be written #D ¼
P

D ð#DÞ1D ¼
Pk

j¼1 1Dj
: (The curious

first equality is a consequence of our abuse of notation: as a

random variable the total number of disease alleles #D in

an arbitrary individual is denoted by #D if the event D

occurs.) This gives

Eð#DÞ ¼ E
Xk
j¼1

1Dj
¼

Xk
j6¼1

pDj

Eð#D jDiÞ ¼
Xk
j¼1

Eð1Dj
jDiÞ ¼ 1þ

X
j 6¼1

PDj
jDi

Thus,

Eð#DjDiÞ � Eð#DÞ
1� pDi

¼
1� pDi

þ
P
j6¼i

ðpDjjDi
� pDj

Þ

1� pDi

¼1þ
X
j6¼i

rDi;Dj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pDj

ð1� pDj
Þ

pDi
ð1� pDi

Þ

s

We conclude the derivation of (4) by substituting this in

(A.3).

Lemma 1. If events A and B are conditionally independent

given a partition D of the outcome space, then

rAB ¼
X
D2D

rADrDBð1� PðDÞÞ

Proof Because A and B are conditionally independent,

they are conditionally uncorrelated, that is cov(1A,1BD)¼ 0

almost surely. Therefore, the usual conditioning rule for

covariances gives

covðA; BÞ ¼Ecovð1A; 1BDÞ þ covðEð1ADÞ; Eð1BDÞÞ
¼0þ EðEð1ADÞ � E1AÞðEð1BDÞ � E1BÞ

Here on the event D the variable E(1AD)�E1A is equal to

PðADÞ � PðAÞ ¼ PðA \DÞ � PðAÞPðDÞ
PðDÞ

¼rAD

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PðAÞPðAcÞPðDcÞ

PðDÞ

s

Substituting this and the corresponding formula for

P(BD)�P(B) in the preceding display gives

covð1A; 1BÞ ¼
X
D2D

rAD

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PðAÞPðAcÞPðDcÞ

PðDÞ

s

rBD

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PðBÞPðBcÞPðDcÞ

PðDÞ

s

This can be rearranged to give the assertion.
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