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T
he field of human genetics has re-

cently become overwhelmed with

the need for information manage-

ment and analysis. Genome-wide associa-

tion studies, transcriptional profiling and

proteomics have all contributed greatly to

the increased need for expertise from the

information sciences. One significant chal-

lenge for human genetics is to identify those

genetic, genomic, proteomic and environ-

mental factors that increase or decrease

susceptibility to disease. This is a difficult

challenge due to the enormous volume of

information that is often noisy and the

complexity of the genotype-to-phenotype

mapping relationship that arises from non-

linear phenomena such as epistasis or gene–

gene interaction. It is increasingly clear that

an analytical retooling to confront both the

volume and complexity of the data is cri-

tical for moving the field forward.1 The

parametric statistical paradigm has served us

well over the years but now is the time to

explore a wide range of different analytical

methods for complex problem solving from

a diversity of fields such as computer sci-

ence, mathematics, etc. The paper by Dong

et al2 on page 229 of this issue explores the

use of information theory for the genetic

analysis of complex human diseases.

Information theory was launched as a

formal discipline in 1948 with the pub-

lication of Shannon’s3,4 two papers on ‘A

Mathematical Theory of Communica-

tion’. Shannon at that time worked for

Bell Labs and was interested in mathe-

matical methods for encoding information

for transmission through electronic

signals. The basic problem is to encode a

message, transmit it as a signal, receive it

and decode it with minimal noise such

that the original message is not lost. It

was in these seminal papers that Shannon

introduced and defined entropy as a

measure of uncertainty to help with

maximizing the efficiency and accuracy

of encoding, sending, receiving and de-

coding a message. Consider the following

simple genetic example as a means for

explaining entropy. Assume that 100 cases

with a particular disease and 100 healthy

controls were sampled from a population

for an association study and a bi-allelic

single-nucleotide polymorphism (SNP) in

a particular candidate gene is genotyped.

A fundamental question is whether any

information about who is a case and who

is a control can be obtained from knowl-

edge about genotype. Let us assume that

the AA and aa genotypes are each repre-

sented in 25 cases and 25 controls, while

the Aa genotype is represented in 50 cases

and 50 controls. With this set of data it is

clear that no information about case–

control status can be gained by looking at

the genotypes and thus there is maximum

uncertainty. With a binary outcome like

case–control status entropy is simply

[�p� log2 p]�[(1�p)� log2(1�p)], where p

is the probability of being a case (p) within

a genotype and (1�p) is the probability

of being a control within a genotype.

Thus, for our simple example, the entropy

for genotype AA would be

�[(0.5*�1)þ (0.5*�1)]¼1. Consider the

example where the AA genotype is

represented in 50 cases and 0 controls.

In this case the entropy would be 0,

indicating maximum knowledge about

who is a case and who is a control.

Another important concept is informa-

tion, which is simply 1�entropy. In our

first example, information is 0 (the mini-

mum) and in our second example in-

formation¼1 (the maximum). Using the

communications analogy, the case–con-

trol status (1s and 0s) of each individual in

the data set forms a message that could be

sent to a collaborator, for example. The 1s

and 0s in the message could be coded as

genotypes AA, Aa and aa, and transmitted

via e-mail, for example, to the collabora-

tor along with a genetic model that

assigns high- and low risk to each geno-

type. The collaborator could then decode

each individual’s genotype and re-assign

case–control status using the genetic risk

model as a key. The entropy or uncer-

tainty of these assignments could be used

as a measure of the quality of the

information encoding and the quality of

the transmission, which might be suscep-

tible to the introduction of noise from

random events or systematic errors.

Parameterization of genetic association

studies in this manner is useful because

there is a nice foundation of mathematical

theory for information sciences and there

are many useful data analysis tools

that make use of entropy and other

information-based measures. In addition,

casting the problem as an information

theory problem provides a parallax view

that is often very useful when confronting

a complex problem. The paper by Dong

et al2 introduces the Entropy-Based SNP–

SNP Interaction Method (ESNP2) for de-

tecting and modeling epistasis in genetic

association studies. This approach consists

of three steps. First, the entropy of the

data set (cases and controls) is computed

as a baseline. Second, the information

gained about case–control status from

knowledge of the genotypes at each single

SNP is estimated. Third, the information

gained about case–control status from

knowledge about genotypes gained by

combining two SNPs as a Cartesian pro-

duct is estimated. This final step provides

a measure of the interaction information

for any pair of SNPs and thus can be used

to assess the presence of epistasis in a

genetic association study. The concept of

interaction information was described by

McGill5 and has been rediscovered every

few years since. Jakulin and Bratko6

provide the most recent comprehensive

evaluation of information theory to de-

tect, visualize and interpret nonadditive
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interactions between variables. Moore

et al7 have adapted recently these entro-

py-based interaction analysis methods as a

way to detect and interpret epistasis in

case–control studies. The novelty of the

study by Dong et al2 is the comparison of

interaction results with two-locus epistasis

models such as those described by Li and

Reich.8 The paper includes a nice applica-

tion of the ESNP2 approach to sickle cell

anemia and malaria where they find

significant evidence for interaction. A nice

feature of this study is the availability of

open-source software that can be used

to implement the method with other studies.

As the analysis of epistasis and its role in

the genetic architecture of common dis-

eases becomes more popular, there are

several important challenges that need to

be addressed. First, we need an analytical

retooling to embrace the complexity of

the genotype–phenotype mapping rela-

tionship.1 Second, epistasis analysis on a

genome-wide scale is difficult due to the

combinatorial magnitude of the pro-

blem.7 Finally, making biological infer-

ences about cellular processes from

statistical models of epistasis derived from

population data is extremely difficult.9,10

The studies by Dong et al2 and others7

suggest that information theory has an

important role to play in developing

mathematical theories of human genetics’
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