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Japanese and North American/European patients
with Beckwith–Wiedemann syndrome have different
frequencies of some epigenetic and genetic
alterations
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Beckwith–Wiedemann syndrome (BWS) is an imprinting-related human disease. The frequencies of
causative alterations such as loss of methylation (LOM) of KvDMR1, hypermethylation of H19-DMR,
paternal uniparental disomy, CDKN1C gene mutation, and chromosome abnormality have been described
for North American and European patients, but the corresponding frequencies in Japanese patients have
not been measured to date. Analysis of 47 Japanese cases of BWS revealed a significantly lower frequency
of H19-DMR hypermethylation and a higher frequency of chromosome abnormality than in North
American and European patients. These results suggest that susceptibility to epigenetic and genetic
alterations differs between the two groups.
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Introduction
Beckwith–Wiedemann syndrome (BWS), a well-known

imprinting-related human disease, is characterized by

macrosomia, macroglossia, and abdominal wall defects

(OMIM #130650). Genomic imprinting is an epigenetic

phenomenon that is responsible for parent-of-origin-

specific expression of genes. The relevant imprinted

chromosomal region in BWS, 11p15.5, consists of two

independent imprinted domains, IGF2/H19 and CDKN1C/

LIT1. Imprinted genes within each domain are regulated by

the imprinting control region (ICR), which in this case is

either H19-DMR or KvDM1 (Figure 1a).1 In North American

and European BWS patients, several causative alterations

have been identified: KvDMR1 loss of methylation (LOM)

(B50%), H19-DMR hypermethylation (2–7%), paternal

uniparental disomy (patUPD; B20%), CDKN1C mutations

(B10%), duplications of 11p15 (o1%), and inversions or

translocations involving 11p15 (o1%).1 The cause is

unknown for B15% of patients.1 Comprehensive analyses

of Japanese patients with BWS, however, have not been

carried out to date. To add to our understanding of

frequencies of epigenetic mutations in the Japanese

population, we analyzed 47 cases of BWS. Compared with

North American and European groups, the frequency of

H19-DMR hypermethylation was significantly lower (0%)

and that of chromosome abnormality (13%) was higher in

the Japanese patients. These results suggest that suscept-
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ibility to epigenetic and genetic alterations differs accord-

ing to ethnicity.

Materials and methods
BWS patients

Forty-seven Japanese patients who had been diagnosed

with BWS by clinical geneticists were analyzed. Diagnoses

were made according to the criteria of DeBaun and Tucker2

with all patients having at least two of the five most

common features (macroglossia, birth weight 490th

percentile, hypoglycemia in the first month of life, ear

creases or ear pits, and abdominal wall defects). DNA was

extracted from lymphoblastoid cell lines, peripheral blood

lymphocytes, or tissues. One sample from each patient was

used. This study was approved by the Ethical Committee

for Human Genome and Gene Analyses of the Faculty of

Medicine, Saga University.

Chromosomal analysis

Metaphase chromosomes were analyzed using the standard

G-banding method.

Methylation analyses

We investigated methylation status at the AccII site 16 bp

downstream of the NotI site in KvDMR1, and the MluI site

approximately 80bp downstream of the CTCF binding site

6 (CTS6) in H19-DMR. Combined bisulfite restriction

analyses (COBRA) using the hot-stop method were em-

ployed as described previously.3,4 For H19-DMR, bisulfite

sequencing was performed using the same primers as used

for COBRA. PCR primers and conditions are shown in

Supplementary Table 1. The percentage methylation was

calculated as: intensity of methylated band/(intensity of

methylated bandþ intensity of unmethylated band)� 100.

Paternal uniparental disomy

To analyze patUPD, we used DNA polymorphic markers for

11p15.5, including tetranucleotide repeats in the tyrosine

hydroxylase gene (TH), an AvaII (ApaI) polymorphism in

IGF2, an RsaI polymorphism in H19, and an NsiI poly-

morphism in KCNQ1OT1. Hot-stop PCR was employed for

PCR–RFLP to eliminate heteroduplex formation. The

percentage mosaicism of patUPD was calculated as:5 %

mosaicism¼ (k�1)/(kþ1)� 100, where k is the ratio of the

KIP2/LIT1 imprinted domain IGF2/H19 imprinted domain

H19IGF2CDKN1C KvLQT1
LIT1

Mat

Pat

cen tel

TH
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Figure 1 11p15.5 imprinted region and methylation and patUPD analysis. (a) 11p15.5 imprinted region. Representative genes are shown. Gray
boxes and shaded boxes indicate maternal and paternal expressed genes, respectively. KvDMR1 and H19-DMR are the ICRs for each domain. Black and
white ovals indicate methylated and unmethylated ICRs, respectively. Broken arrows indicate the transcriptional direction. (b, c) Representative results
for methylation analyses of KvDMR1 and H19-DMR using hot-stop COBRA. patUPD patients had partial KvDMR1 LOM and partial H19-DMR
hypermethylation. (d) Representative results for patUPD analysis. Bands transmitted from the father were stronger than those from the mother,
indicating patUPD. 18P and 19P, DNA from patient’s father; 18M and 19M, DNA from patient’s mother; 18S, unaffected sister; c, control for complete
digestion. MC, methylated DNA control; NC, normal control.
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Table 1 Results of genetic and epigenetic analyses in Japanese BWS patients

Pt no. Pt ID Tissue
KvDMR1
LOM

H19-DMR
hypermethylation

PatUPD (%
mosaicism) CDKN1C mutation Chromosome abnormality Alteration type Tumor

1 YN LCL + � � � � KvDMR1 LOM
2 NA PBL + � � � � KvDMR1 LOM
3 ST PBL + � � � � KvDMR1 LOM
4 SR PBL + � � � � KvDMR1 LOM
5 KT PBL + � � � � KvDMR1 LOM
6 OZ LCL + � � � � KvDMR1 LOM
7 MTT LCL + � � � � KvDMR1 LOM
8 TH PBL + � � � � KvDMR1 LOM
9 TY LCL + � � � ND KvDMR1 LOM
10 OY LCL + � � � ND KvDMR1 LOM
11 IM LCL + � � � ND KvDMR1 LOM
12 SK LCL + � � � ND KvDMR1 LOM
13 MH PBL + � � � ND KvDMR1 LOM Rhabdomyosarcoma
14 MR PBL + � � � ND KvDMR1 LOM
15 Kbt-To Tongue + ND � ND ND KvDMR1 LOM
16 TK LCL Partial Partial + (66%) � � PatUPD Hepatoblastoma
17 KY PBL Partial Partial + (37%) � � PatUPD
18 A-MS PBL Partial Partial + (50%) � � PatUPD
19 MI PBL � Partial + (30%) � ND PatUPD Hepatoblastoma
20 A87-Lu Lung Partial ND + (45%) ND ND PatUPD
21 S99-Li Liver Partial ND + (77%) ND ND PatUPD
22 S94-Pa Pancreas Partial ND + (72%) � � PatUPD
23 MT LCL � � � 399C4T (mat) � CDKN1C

mutation
Cardiac atrial tumor

24 SA PBL ND ND ND 570delCTinsG
(mat)

� CDKN1C
mutation

25 SA-S PBL ND ND ND 570delCTinsG
(mat)

� CDKN1C
mutation

26 Fjm-To Tongue � ND � 1086delTinsAG � CDKN1C
mutation

27 SzM LCL � Partial � � Trisomy 11 due to t(11;14)
(pat)

Chromosome
abnormality

28 SY LCL Partial Partial ND ND Trisomy 11 due to t(11;X)
(pat)

Chromosome
abnormality

29 YT LCL � Partial � � Trisomy 11 (pat) Chromosome
abnormality

30 MS LCL ND ND ND ND Trisomy 11 Chromosome
abnormality

31 MK LCL � � � � t(11;12) Chromosome
abnormality

32 SdM LCL � � � � 46,XX,�17,+der(17),t(14;17)
(q32;p13)

Chromosome
abnormality

33 OM LCL � � � � � Unknown
34 TM LCL � � � � � Unknown
35 IY LCL � � � � � Unknown
36 AK LCL � � � � � Unknown
37 HD LCL � � � � � Unknown
38 HY LCL � � � � � Unknown
39 KK LCL � � � � � Unknown
40 KH LCL � � � � � Unknown
41 MtS LCL � � � � � Unknown
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intensity of the paternal to maternal alleles of the sample.

We defined patUPD as more than 30% mosaicism.

CDKN1C mutations

Mutations of CDKN1C were investigated by sequencing as

described previously.6

Statistical analysis

Differences between Japanese and North American and

European patients with BWS were calculated using the w2-
test or Fisher’s direct probability method. Probability levels

of o0.05 were considered statistically significant.

Results and discussion
We used hot-stop COBRA for quantitative analysis of

methylation, the results of which were confirmed in

several patients by methylation-sensitive Southern blot

analysis. We found that 15 patients (#1–15) had complete

LOM of KvDMR1 and 7 patients (#16–18, #20–22, #28) had

partial LOM (Table 1 and Figure 1b). We also found seven

patients (#16–19, #27–29) with partial hypermethylation

of H19-DMR, but found no patient with complete hyper-

methylation (Figure 1c). patUPD manifested in a mosaic

pattern, and trisomy 11 was associated with an extra 11p,

which may have affected the results of methylation

analyses at KvDMR1 and H19-DMR. Indeed, all our patients

with partial KvDMR1 LOM and/or partial H19-DMR

hypermethylation had mosaic patUPD (#16–22) or trisomy

11 (#27–29; Figure 1b and c). We thus concluded that 15

(#1–15) patients (34%) had isolated KvDMR1 LOM. For

H19-DMR, since the MluI site used for COBRA was

approximately 80bp downstream of CTS6, we examined

whether the methylation status of the MluI site correctly

reflected that within the core sequence of CTS6 by bisulfite

sequencing. A total of 258 clones generated from 13

patients (11–20 clones per patient; 5 patients with

KvDMR1 LOM, 3 with patUPD, 1 with the KIP2 mutation,

and 4 with cause unknown) and 5 normal individuals (11–

12 clones per individual) were sequenced. We found that

235 clones (91%) showed the same methylation status at

the MluI site and CTS6 (data not shown). Thus, we

concluded that COBRA based on the MluI site accurately

reflected the methylation status of CTS6. We also con-

cluded that no patient in this study had isolated H19-DMR

hypermethylation.

When PCR products generated from the paternal allele

were more intense than those from the maternal allele, an

allelic imbalance was indicated (Figure 1d). We found

seven patients with patUPD (15%), as mentioned above,

and six patients (#27–32) with chromosome abnormalities

(13%); via karyotyping, four of these patients were found

to have translocations and two were found to have trisomy

11 (Table 1). Two (#27 and #28) of the four translocation

patients had partial trisomy for 11p due to a translocation.T
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Partial KvDMR1 LOM and/or partial H19-DMR hyper-

methylation in patients #27–29 indicated that they had

two copies of paternal 11p. Patient #27 was previously

described as having paternal origin duplication of 11p.7

Whether the chromosomal abnormalities in the remaining

two cases (#30 and #31) were of paternal origin was

unknown. Although patient #32, who suffered from

umbilical hernia, macroglossia, ear creases, and ear pits,

had a translocation, it did not involve 11p or any

molecular abnormalities. Thus, an unknown causative

factor, which may or may not be due to the translocation,

is involved in this patient. We found three mutations in

CDKN1C, that is, 399C4T, 570delCTinsG, and 1086del-

TinsAG, in four patients (9%; #23–#26; #24 and #25 were

siblings), as reported previously.8

Of the 47 patients, 15 (32%; #33–47) did not have any

identifiable alterations, and so their BWS was designated as

cause unknown. The frequencies of macrosomia and

abdominal wall defects were lower in these patients than

in patients with known causes (data not shown). Although

microdeletion of H19-DMR has been reported,9–11 we did

not find it in any patient examined, including the 15

patients with cause unknown and two patients (#18 and

#28) who had patUPD and trisomy 11 due to t(11;X),

respectively (data not shown).

The frequency of isolated H19-DMR hypermethylation

was significantly lower in Japanese patients with BWS than

in the North American and European patients (Table 2).

The Japanese patients had more frequent chromosomal

abnormality. Although our sample number was not large,

our data suggest that susceptibility to epigenetic and

genetic alterations leading to BWS varies according to

ethnicity. BWS predisposes patients to embryonal tumors,

especially Wilms’ tumor, in which loss of imprinting (LOI)

of IGF2 accompanied by H19-DMR hypermethylation is

involved. Furthermore, a strong association between

H19-DMR hypermethylation and Wilms’ tumor develop-

ment in BWS has been reported.12,13 In Japanese BWS

patients, however, the frequency of Wilms’ tumor tends to

be lower than expected,14 and low frequencies of H19-DMR

hypermethylation and IGF2 LOI in Wilms’ tumors in

Japanese children have been reported.15 Of the 47 patients

in the present study, 5 patients developed tumors (3

hepatoblastomas, 1 rhabdomyosarcoma, and 1 cardiac

atrial tumor). Although overall tumor incidence (11%)

was consistent with that reported for North American and

European patients, there were no patients with Wilms’

tumor in our sample. The low frequency of H19-DMR

hypermethylation may account for this. Further investiga-

tions will be necessary to understand whether the different

frequencies of epigenetic and genetic alterations are due to

DNA polymorphisms, such as SNPs and/or low copy

repeats, at 11p.
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