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Triggered by the existing confusion in the field, the current paper aimed to review the current knowledge
of both microsatellite instability (MSI) and loss of heterozygosity (LOH) detected by microsatellite markers
in head and neck squamous cell carcinoma (HNSCC), and to provide the reader with an assessment of their
prognostic and predictive value in this tumor type. For both MSI and LOH, various detection methods were
included such as mono- and polynucleotidemarkers and gel- as well as automated analyses. Only studies
based on PCR techniques with microsatellite markers were considered. Taking the methodological
problems occurring in investigations with microsatellite markers into account, LOH seems to be more
common than MSI in HNSCC. Although both types of microsatellite alterations have been correlated with
clinicopathological features of this tumor type, only LOH seems to have a clear prognostic value. The
predictive value of both MSI and LOH is debatable. More research has to be performed to clearly establish
LOH detection as a translational application in the HNSCC field, aiming to predict response to treatments
or outcome, and eventually to use as a therapeutic target.
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Introduction
Head and neck squamous cell carcinoma (HNSCC) is the

sixth most common solid tumor worldwide, with an

annual incidence of more than 500000. Traditional

treatment of this tumor type is based on combinations of

surgery, radiotherapy and chemotherapy with still a rather

poor success rate for locally advanced disease. As a result,

enormous efforts are currently being put into the search for

new molecular markers and associated molecular treat-

ment strategies that might stratify patients and individua-

lize treatment options. With these aims in mind,

microsatellite alterations such as microsatellite instability

(MSI) and loss of heterozygosity (LOH) gained a lot of

interest during the last decade.

The interest in MSI as possible tumor marker was greatly

influenced by the marked presence and prognostic value of

this phenomenon in Hereditary Non Polyposis Colon

Cancer (HNPCC).1 MSI is also typically associated with

Turcot’s and Muir–Torre syndrome.2 However, the fre-

quency and clinical value of MSI in other solid tumors

including HNSCC differs widely, largely due to an obvious

variance in used methods and criteria.2

Concerning LOH, different techniques have been

developed to assess this type of alterations. The further
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report on LOH in this work will only refer to LOH detected

with microsatellite markers. Problems of methodological

variance trouble the reported frequencies, in alignment

with MSI assessment. The prognostic and predictive value

of this phenomenon varies along different tumor types

(bladder, prostate, brain cancer).3 –5 Although the potential

of LOH as a molecular prognostic marker in HNSCC has

gained confidence over the years, literature on this field

stays confusing.

The aim of this paper was to review the current knowl-

edge of microsatellite alterations, both MSI and LOH, in

HNSCC and to provide the reader with an assessment of

their prognostic and predictive value.

What are MSI and LOH?
Microsatellites are stretches of DNA in which a short motif

(usually 1–5 nucleotides long) is repeated 5–100 times.

Microsatellite regions are at high risk for variations in the

number of repeats caused by slippage of the DNA

polymerase during DNA replication. In normal cells, these

errors get repaired by the mismatch repair system (MMR)

involving proteins such as MLH1, MLH3, MSH2, MSH3,

MSH6, PMS1 and PMS2. In tumors, defects in the MMR

system may be present, so that variations in microsatellite

regions are not repaired correctly, leading to definitive

somatic changes with gain or loss of repeat units. MSI can

thus indicate the presence of a defect MMR system.

Interestingly, MMR deficiency can lead to carcinogenesis

as a result of mutations in key genes, defining a so-called

mutator phenotype. According to Field, MSI could serve as

an indirect marker for the somatic mutations caused by the

mutator phenotype.6 This mutator phenotype is an

important carcinogenetic mechanism in HNPCC, which

is associated with inherited MMR mutations.1

Genetic and epigenetic inactivation of the MMR path-

way is however not a commonly event in solid tumor types

other than HNPCC. Therefore, MSI in these other tumor

types, if observed, may be due to factors other than defects

in MMR genes such as malfunctioning of factors down-

stream of MMR components or in other systems that proof-

read DNA for replication errors.7 Although not clearly

established, environmental factors such as oxygen radicals,

lipid adducts, smoking or diet also could play a role in

generating MSI. These exposures can act alone or in

concert with defective DNA repair pathways.8

LOH, in contrast, marks a suppressor phenotype that is

characterized by wide variety in chromosomal numbers

(aneuploidy) and extensive loss of genetic material. Even

if nowadays most LOH investigations use comparitive

genomic hybridization or single-nucleotide polymor-

phisms (SNPs) techniques, the presence of LOH can

also be detected with the use of microsatellite markers.

Accordingly, LOH can be recognized by loss of a

genomic fragment, SNP or microsatellite allele in a tumor

when compared with normal tissue. LOH is a common

mechanism of inactivation of tumor suppressor genes (TSG)

located in the neighborhood of the allelic marker that is

being detected. TSG loss is normally confirmed by investi-

gating gene deletion or mutation, silencing by DNA

methylation or concurrent loss of protein expression.9

Prevalence of MSI and LOH in HSNCC
MSI

In HNSCC, the reported frequencies of MSI vary widely but

in general the incidence is low leaving any significance

unclear. Table 1 that shows the published studies till now

on MSI in HNSCC indicates that the incidence varies from

321 to 88%24 of MSI-H, largely depending on the number of

patients, the loci and markers used, the patient age and

detection methods.

In general, MSI in HNSCC seems to be a late event

associated with tumor progression. Most studies show that

invasive carcinomas manifest more MSI than precursor

lesions, suggesting progressive accumulation of MSI during

tumor development12,28 (Table 1). Furthermore, precursor

lesions that show MSI are more prone to progress to

HNSCC.19 Arguments against this vision arise from studies

showing high MSI incidences in pre-malignant lesions and

in young patients.20,24

Most studies report on a lack of MMR gene defects in

HNSCC compared with HNPCC.14,21,24,29 This could either

indicate a low incidence of MSI or a higher proportion

of non-MMR MSI cases. In HNSCC, this could be caused

by common carcinogens for this patient group, such as

smoking. However, it could also mean that ‘true’ MSI in

HNSCC does not exist – at least not in the way it does in

HNPCC.

LOH

Numerous different techniques have been used to assess

LOH alterations in HNSCC. Perhaps this is one reason

why, although the potential of this molecular prognostic

marker has gained confidence over the years, the literature

in this field stays confusing. Table 2 lists the published

studies on LOH detected with microsatellite markers in

HNSCC.

Most suggest that the frequency of LOH is higher than

of MSI, indicating that the suppressor phenotype could be

more prevalent.11,12,36 LOH and the spectrum of chromo-

somal loss progressively increases at each histopathological

step from benign hyperplasia to dysplasia to carcinoma

in situ to invasive cancer.19,33,53 Some primary and

recurrent HNSCC originate from the same precursor lesion

that contains genetically related features to the tumors,

including LOH.54

Overall, studies in HNSCC have shown that deletions at

chromosome arms 3p, 4p, 8p and 9p represent early
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genetic changes and that loss at 18q, 17p and 11qter

is associated with neoplastic progression.33,34,36,45,48,55

Dysplastic regions in the head and neck region that show

more LOH seem to be more at risk for neoplastic

evolution.17,18,19,33

There are several reports that LOH is associated with

more advanced stage and more aggressive HNSCC

tumors,13,34,36,37,56 and specifically with nodal involve-

ment.32,44 Other authors describe very specific correl-

ations such as a link between LOH at 17p and mitotic

index,39 a connection of LOH at MLH1 with lower grade

HNSCC, and LOH at CDKN2A with higher grade,9 or a

preference of LOH in tumors originating from the

pharynx.56 A correlation between LOH and other pa-

tient-related factors like age and race, was described in

some studies.34,51

Methodological issues
The first critical point in MSI and LOH detection is

microsatellite marker selection. The use of the Bethesda

MSI reference set8 that was developed for HNPCC versus

presumably more HNSCC-selective markers is hotly de-

bated, as is the use of mononucleotide versus polynucleo-

tide markers.17,57 –59 However, most researchers currently

accept that for MSI assessment, quasimonomorphic mono-

nucleotide markers are suitable. For the detection of LOH

with microsatellite markers, locus selection is dependent

on the specific chromosomal region and possible asso-

ciated TSG that the researchers reckon to be relevant.

Second cause for the observed variance in MSI and LOH

reports lies in the use of different detection methods. The

modern automatic fragment analysis procedures offer high

throughput analysis and a more precise and quantitative

Table 1 MSI in HNSCC

Number of patients Chromosomal arms or chromosomes
Markers

(n) MSI (%) Reference

40 3p 10 15% MSI Arai et al10

56 primary, 23 resistant to chemo 3p, 9p, 17p, 8p, 18q 22 2% MSI-H
11% MSI-L

Blons et al11

20 (normal mucosa, dysplasia and
carcinoma of same patients)

3p, 5p, 5q, 8p, 9p, 9q, 11q, 17p,
17q, 18p, 18q

25 15% dysplasia MSI+
30% invasive ca MSI+

El Naggar
et al12

38 1p, 3p, 3q, 4q, 5p, 6p, 7, 8p, 9p,
11q, 13q, 14q, 17p, 18q

28 13% MSI in one marker Fiedler et al13

56 2, 4, 6, 7, 8, 10, 13, 14, 16, 17 34 28% MSI Z2 markers Field et al6

153 1p, 2p, 3p, 4q, 5q, 9p, 9q, 11q,
17p, 17q, 18q

22 14% MSI
3% MSI-H
1% MSI at BAT 25

Glavac et al14

23 2p, 1p, 1pter-1qter, 3p, 4q, 5q, 7q,
8pter-8qter

9 Colon cancer history: 25% MSI-
H, 25% MSI-L
No colon cancer history: 20%
MSI-L, no MSI-H

Gleich et al15

91 3p, 6p, 7q, 9p, 11p, 11q 19 7% MSI Ishwad et al16

35 X, 14, 19, 6, 12, 4, 21 52 29% MSI at Z1 locus Mao et al17

30 3p, 4q, 7p, 9p, 17p, 18q 17 13% MSI (at 1 locus) Ng et al18

39 HNSCC patients with history of
dysplasia, 39 controls with
dysplasia but no HNSCC

3p, 4q, 5q, 8p, 9p, 13q, 17p, 18q 25 Cases: 18% MSI-H, 23% MSI-L
Controls: 0%MSI-H, 15%MSI-L

Partridge et al19

31 pre-malignant lesions 3p21, 8p21-23, 9p21 (1q, 3q, 7q,
19q, 20q as control markers)

23 55% MSI at Z1 locus Partridge et al20

67 1p, 3p, 3q, 9p, 13q, 19p 20 4% MSI-L,
3% MSI-H

Piccinin et al21

46 3p24-pter 6 16% MSI
57% MSI or LOH

Rowley et al22

41 18 10 17% MSI
56% MSI or LOH

Rowley et al23

24 r44 years 33Z45 years 2p, 3p, 5q, 8p, 9p, 13q, 14q,
14pter, 17q, 21q

16 r44 years:
100% MSI at Z1 loci
88% MSI at Z2 loci
Z45 years:
61% MSI at Z1 site
36% at Z2 sites

Wang et al24

32 oral SCC 8p 14 50% MSI Ono et al25

41 oral SCC 1p 15 44% MSI Araki et al26

52 3p, 9p, 17p 35 46% MSI at 42 loci Nunn et al27

111 hyperplasia to invasive 3p, 9p, 17p, 5q 6 14% MSI at Z1 loci Ha et al28

This table represents published studies on MSI showing the number of patients included, the chromosomal arms or chromosomes examined, the
number of microsatellite markers used and the reported percentage of MSI.
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Table 2 LOH in HNSCC

Number of patients Chromosomal arm or chromosomes
Markers

(n) Conclusion Reference

28 All limbs, except 13p, 14p, 15p,
21p, 22p

50 High LOH incidence at 3p, 5q,
9q, 11q, 17p

Ah-See et al30

40 3p 10 Most LOH near VHL locus Arai et al10

64 9p 1 26% LOH Bazan et al81

56 primary, 23 resistant 3p, 9p, 17p, 8p, 18q 22 75% LOH Blons et al11

48 primary, 8 M+ 10q 4 10q25-q26 highest LOH% Bockmuhl et al32

83 (preinvasive) 9p, 11q, 17p, 3p, 13q, 4q, 14, 8p,
6p

26 Most LOH at 9p, 3p, 11q Califano et al33

92 (48 variants and 44
conventional)

3p, 4p, 8p, 9p, 11q, 17p, 18q 21 Limited set of markers (at 4p,
9p, 11q and 18q) identifies
most LOH

Choi et al34

150 3p, 5q, 8p, 9p, 10p, 18q, 21q 26 LOH at 3p:67%, at 8p: 43%, at
9p: 61%.

Coon et al35

20 (normal mucosa, dyplasia and
tumor of same patients)

3p, 5q, 8p, 9p, 9q, 11q, 17p, 3p,
18p

25 LOH high at 9p, 8p, 3p, 9q and
11q

El Naggar
et al36

38 1p, 3p, 3q, 4q, 5p, 6p, 7, 8p, 9p,
11q, 13q, 14q, 17p, 18q

28 Most LOH on 3p, 9p and 13q Fiedler et al13

80 All autosomal chromosome arms
except 13p, 14p, 15p, 21p, 22p

145 Highest LOH on 3p, 9p, 17p
and 18q

Field et al37

153 1p, 2p, 3p, 4q, 5q, 9p, 9q, 11q,
17p, 17q, 18q

22 78% LOH
Most LOH in 3p14-p26, 9p21,
17p12-p13

Glavac et al14

23 2p, 1p, 1pter-1qter, 3p, 4q, 5q, 7q,
8pter-8qter

9 More LOH in the group with
colon cancer history

Gleich et al15

43 3p 23 81% LOH at one or more 3p
markers
66% LOH at 3p21.3
56% LOH at 3p12

Hogg et al31

77 3p, 9p, 6p, 7q, 11p, 11q 16 71% LOH at Z1 loci
58% LOH at 3p
48% LOH at 9p

Ishwad et al38

32 hyperplastic pre-malignant
laryngeal lesions

3p, 6p, 6q, 8p, 9p, 9q, 13q, 17p,
18q

32 Most LOH at 3p21-14 and
9p22-21

Kleist and
Poetsch39

26 dysplastic epithelium 9p21 3 35%-82% LOH Kresty et al40

68 1p, 1q, 2p, 3p, 4p, 4q, 5p, 5q, 6p,
7p, 7q, 8p, 9p, 10p, 10q, 11q,
12p, 13q, 14q, 15q, 16p, 16q,
17q, 18p, 19p, 19q, 20p, 20q,
21q, 22q

43 Most (420%) LOH at 3p21,
3p25-26, 8pter-21.1, 13q14,
17p12

Li et al41

48 13q 11 67% LOH at 13q, mostly loss of
entire chromosomal arm

Maestro et al42

29 All somatic chromosome arms,
except 13p, 14p, 15p, 21p, 22p

58 72% LOH at 9p
50% LOH at 3, 11q, 13q, 17p
435% at 4, 6p, 8, 14q, 19q

Nawroz et al43

30 3p, 4q, 7p, 9p, 17p, 18q 17 30% LOH, most at 7q and 9p Ng et al18

34 13q14.3 18 68% LOH Ogawara et al44

39 HNSCC patients with history of
dysplasia, 39 controls with
dysplasia but no HNSCC

3p, 4q, 5q, 8p, 9p, 13q, 17p, 18q 25 Most LOH at 3p21, 9p21,
13q14.2, 17p13.1, 18q21.1

Partridge et al19

48 oral SCC 3p 15 71% LOH at Z1 locus Partridge et al45

31 pre-malignant lesions 3p21, 8p21-23, 9p21 (1q, 3q, 7q,
19q, 20q as control markers)

23 77% AI (LOH and allelic gain) Partridge et al20

67 1p, 3p, 3q, 9p, 13q, 19p 20 7-77% LOH, most at 3p and
13q

Piccinin et al21

46 3p24-pter 6 48% LOH at Z1 locus
57% LOH or MSI
Most LOH between D3S656
and D3S1293

Rowley et al22

41 18 10 51% LOH, most 18q Ono et al25

62 larynx 3p, 8p, 13q, 9p, 1q, 5q, 2p, 17p,
17q, 21q

13 Most LOH at 9p, 3p, 8p, 13q,
2p

Sasiadek et al9

59 larynx 8p 3 LOH of D8S264 independent
negative prognostic factora

Scholnick
et al46

31 oral cancer 11 22 56% LOH at Z1 locus, most at
11q

Uzawa et al47
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assessment of MSI and LOH in comparison to the

previously used gel electrophoresis methods.60–64

Although other points of discussion are the cutoff values

to be used for LOH ratios (the ratio between the peak

height ratios of both alleles of normal and paired tumor

sample),9,39,63,65 there is fairly general agreement that

appropriate cutoffs are 42 or o0.5. A last issue is on the

different types of MSI. Most investigators discern MSI-High

(MSI-H, MSI in Z30–40% of the markers tested) and

MSI-Low (MSI-L, MSI in o30–40% of the markers tested),8

although others call these Type I and II62 or Type B and A

instability,66 respectively.

Prognostic and predictive value of MSI and
LOH in HNSCC
MSI
Prognostic value In HNSCC, the prognostic impact of

MSI is not clear.2 Some studies showed that MSI positivity

in pathologically negative surgical margins of HNSCC can

independently predict local recurrence.67,68 Some authors

found no correlation between MSI in HNSCC and survival,6

whereas others describe a better prognosis for MSI-positive

patients,69 as recently also published for colorectal cancer.1

A possible explanation for the lack of prognostic value is

the lack of statistical power in a lot of studies owing to the

overall low prevalence of MSI in HNSCC, next to the

previously mentioned difference in methodology.

Predictive value As MMR-proficient cells undergo a

cytotoxic reaction after recognition of drug-induced ad-

ducts in DNA, MMR deficiency can theoretically impart

resistance to cancer chemotherapy agents. Some mainly

in vitro and animal work on different tumor types indeed

suggested that MMR-deficient cells have a poorer response

to cisplatin, carboplatin and methylating agents.7,69–71

However, clinical studies in colorectal cancer, in which a

relation between MSI and MMR deficiency is clearly

established, have not shown a consistent predictive value

of MSI.1,72 For ionizing radiation (IR), a link with MMR

defects is unlikely, as IR mainly causes DNA strand breaks

and repair of this damage does not involve the MMR

system. Therefore, it is not surprising that no predictive

value of MSI towards chemotherapy or radiotherapy has

been found in HNSCC, a malignancy in which the

occurrence of MMR deficiency is uncertain.11

LOH
Prognostic value In general, LOH at multiple loci is

associated with a poor clinical course such as nodal

invasion or high-grade disease.44,55 Furthermore, several

studies have identified a negative prognostic role for

LOH,18,37,41,73,74 even in multivariate analyses.34,35,46 This

negative prognostic value is mostly connected to allelic

loss at 3p, 8p, 11q, 13q, 17p and 18q. On the other hand,

LOH at 9p21 seems to be an early event in carcinogenesis

(like LOH at 3p) that has not consistently been connected

with a poor prognosis,34,35,75 but along with LOH at 7q31

has been related to tumor recurrence.76,77 At the most

common loci, the occurrence of LOH is suggested to be

associated with loss of TSG: FHIT at 3p, p16INK4A at 9p, Rb

at 13q and so on. For all of these TSG, a prognostic role has

been described in HNSCC.78–80

Predictive value One study showed that microsatellite

alterations in a histopathologically negative surgical

margin can predict local recurrence.68

LOH is a frequent mechanism of inactivation of TSG,

which might be involved in resistance to chemotherapy.

A study in HNSCC showed an association between LOH at

9p or 17p resistance to a chemotherapy regimen consisting

of cisplatin and 5-fluorouracil, with an independent

Table 2 (Continued)

Number of patients Chromosomal arm or chromosomes
Markers

(n) Conclusion Reference

29 invasive, 17 preinvasive 9 15 72% LOH in invasive 71% in
preinvasive

van der Riet
et al48

26 3p 4 100% LOH at Z1 marker
surrounding VHL locus

Waber et al49

21 9p21-22 8 81% LOH at Z1 marker Waber et al50

18 African Americans (AA), 19
Non-African Americans (NAA)

1p, 3p, 4q, 9p, 13q, 17p 18 68.8–83.3% LOH in AA
66.7–90.0% LOH in NAA

Yoo et al51

32 oral SCC 8p 14 62.5% LOH at Z1 locus Ono et al25

41 oral SCC 1p 15 73% LOH at Z1 locus Araki et al26

52 3p, 9p, 17p 35 69% LOH at 17p
64% LOH at 3p
61% LOH at 9p

Nunn et al27

59 laryngeal SCC 8p 17 39% LOH at Z1 locus Sunwoo et al52

AI, allelic imbalance.
This table represents published studies on LOH showing the number of patients included, the chromosomal arms or chromosomes examined, the
number of microsatellite markers used and the most important conclusions, respectively.
aNo information on LOH prevalence in this study population.
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negative predictive role for LOH at the p53 locus on 17p.

The authors concluded that p53 alterations could play a

role in chemotherapy resistance in HNSCC.11

Conclusion
This review aimed to explore current knowledge about

microsatellite alterations (MSI/LOH) in HNSCC. HNSCC

typically evolves from normal epithelium through dys-

plasia, carcinoma in situ finally to the invasive carcinoma

stage. During this tumorigenesis, cumulative genetic

alterations including MSI and LOH occur.

In HNSCC, most recent research efforts have been put

into the investigation of LOH at several chromosomal loci.

These alterations, representing the suppressor phenotype,

seem to be more common than MSI in HNSCC. Although

both types of microsatellite alterations have been corre-

lated with clinicopathological features of head and neck

cancer, only LOH seems to have a clear prognostic value.

The predictive value of both MSI and LOH towards surgery,

radiotherapy and chemotherapy is debatable. Biggest

challenges however remain in the methodological pro-

blems connected with these types of investigations.

We recently tried to determine the real MSI and LOH

prevalence in HNSCC, using automatic fragment analysis

as the preferred technique to assess MSI and LOH, several

panels of microsatellite markers in an attempt to compare

their sensitivity, and strict cutoff values for LOH detection.

This study resulted in a very low (around 1%) percentage of

MSI, suggesting that indeed the prevalence of MSI in

HNSCC has been overestimated in literature, partly due to

the use of non-optimal techniques (De Schutter et al,

submitted).82 Based on this experience, a role for MSI as

prognostic or predictive marker in this tumor type seems

highly unlikely.

On the other hand, the detection of LOH with the use

of microsatellite markers in HNSCC seems feasible and of

clinical importance. As LOH at certain loci may be

indicative for the loss of a TSG, therapeutic options would

mainly be directed towards re-expression of the involved

gene, which is the goal of several gene therapy trials.

However, re-expression therapies are mainly experimental

and still face a lot of difficulties.

More research has to be performed to establish clearly

LOH detection as a translational application in the HNSCC

field, aiming to predict response to treatments or outcome,

and eventually to use as a therapeutic target.
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