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In genetics, with increasing data sizes and more advanced algorithms for mining complex data, a point is
reached where increased computational capacity or alternative solutions becomes unavoidable. Most
contemporary methods for linkage analysis are based on the Lander-Green hidden Markov model (HMM),
which scales exponentially with the number of pedigree members. In whole genome linkage analysis,
genotype simulations become prohibitively time consuming to perform on single computers. We have
developed ‘Grid-Allegro’, a Grid aware implementation of the Allegro software, by which several
thousands of genotype simulations can be performed in parallel in short time. With temporary installations
of the Allegro executable and datasets on remote nodes at submission, the need of predefined Grid run-
time environments is circumvented. We evaluated the performance, efficiency and scalability of this
implementation in a genome scan on Swedish multiplex Alzheimer’s disease families. We demonstrate that
‘Grid-Allegro’ allows for the full exploitation of the features available in Allegro for genome-wide linkage.
The implementation of existing bioinformatics applications on Grids (Distributed Computing) represent a
cost-effective alternative for addressing highly resource-demanding and data-intensive bioinformatics
task, compared to acquiring and setting up clusters of computational hardware in house (Parallel
Computing), a resource not available to most geneticists today.
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Introduction
With an increasing amount and complexity of data in

genomics and genetics that is generated by today’s high-

throughput technologies, the demand for computational

power has become an issue that sometimes defines the

practical limit for the analysis rather than the size of the

study. Several statistical and analytical algorithms have

been developed that become prohibitively time consuming

when applied on a genome-wide scale. One example is the

analysis of computer-based genotype simulations given

phenotypes with and without a defined disease model, a

commonly used approach in linkage analysis of complex

traits.1,2

Allegro v1.13 is one computer program for linkage

analysis that is free for non-commercial use. It uses a

hidden Markov model,4 in which time and computer

memory cost grow exponentially with the pedigree size

and linearly with the number of markers. Allegro repre-

sents an improvement of the computational algorithms

used in Genehunter,5 and has much of the functionality of
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Genehunter. It specifically calculates single- and multi-

point parametric LOD scores, non-parametric linkage

(NPL) scores and allele-sharing LOD scores. Haplotype

reconstruction and genotype simulations in the absence of

linkage or assuming linkage are also part of Allegro’s

features. Allegro can be used to estimate the power to

detect linkage in a sample set, to estimate global P-values

associated with given LOD scores, to explore linear or

exponential methods of calculating P-values, to compare

parametric and non-parametric methods or, in general, to

give approximate answers to many statistical problems.

Computer simulations of genotypes using Allegro to

evaluate the significance of genome-wide linkage results

have been used previously;6–9 however, execution time

increases rapidly with the number of genotypes and

pedigrees. Despite the fact that Allegro is considerably

faster than Genehunter, sequential genotype simulations

of large pedigree sizes could consume weeks or even

months in run-time in a state-of-the art single computer.

One alternative is to distribute such time-consuming tasks

subdivided into a set of smaller jobs executed on several

computers in parallel. Since Allegro runs are independent

of each other (not data-dependent), Allegro is an ideal

application for a distributed execution.

The Grid paradigm10 offers CPU and data-handling

capabilities that far exceeds what can be attained within

most research institutions and budgets at the same time as

it allows for parallel execution of existing algorithms and

software without re-codification. Grid computing is often

confused with cluster computing; however, a key differ-

ence is that a cluster is a single set of nodes sitting in one

location, whereas a Grid is composed of many clusters and

other kinds of resources including computers, supercom-

puters, storage systems, data sources, and specialized

devices that are geographically distributed and owned by

different virtual organizations,11 to which users other than

the owners can be granted access.

On the basis of Grid technology,12 we have developed an

application of Allegro by which several thousands of

simulations can be performed in parallel in a distributed

dynamic Grid environment, providing theoretically un-

limited simulation power; however still with the current

Allegro restriction of limited family size. The grid imple-

mentation enables, among other things, accurate evalua-

tion of the significance of the results from analyses of

genome-wide human genetic linkage data. To the geneti-

cist without direct access to expensive resources in-house

such as dedicated clusters or computer farms, this repre-

sents a hitherto unexploited resource.

Materials and methods
Architecture overview

To develop a Grid aware implementation of the Allegro

software, we joined the Swegrid virtual organization. The

Swedish Swegrid (http://www.swegrid.se/) is a Globus

(http://www.globus.org/) based Swedish national computa-

tional resource, consisting of 600 computers in six clusters

at six different sites across Sweden. Swegrid is a member of

the NorduGrid13 virtual organization, initiated in January

2001 by several Nordic universities and research centres

and at present it puts together more than 2500 processors.

For the current implementation, we were granted access to

about 600 nodes (CPU) through the different clusters.

The first step to get access to Grid facilities is to download

and install the client package from http://ftp.nordugrid.org/

download/. Binary distributions are available for several

GNU/Linux flavours. A full client installation (o10MB) was

performed in our local Grid proxy server (Master node). The

Grid user has to hold an electronic signed certificate

expended by an appropriate Certificate Authority, which

ensures unique authentication. After the NorduGrid client

installation in our local Grid proxy server, the task of

creating and renewing a Grid proxy session was automati-

cally scheduled in the local master node, using Linux shell

scripts. A schematic system specification of our environ-

ment setup is described in Figure 1.

Implementation

To implement the Grid-Allegro, two programs written in

Perl were developed. Gridallegrosteep1.pl runs locally in the

master node and its task is to prepare the input files that

will be submitted to the Grid environment given the

specified input parameters. In the case of genotype

simulations, for instance, it will require the specification

of family structure, a phenotype, a disease model (in

parametric linkage analysis), a choice of the type of

analysis to be performed (multipoint or single point), and

optional choices as to include P-values to be listed in the

output files (LOD, NPL or Z1r scores). Gridallegrosteep1.pl

also creates a specific number of Grid jobs using the Globus

RSL (Resource Specification Language). After the single

atomistic jobs are defined and created, the Grid-broker

gridallegrosteep2.pl handles the distribution of the jobs to

the remote workers, constantly evaluates the status of each

job, manages re-submission in case of failure or excessive

delay in the Grid queue system, and finally collects the

output results of the calculations.

A detailed description of the ‘Grid-Allegro’ workflow,

implementation, environment setup and configuration is

available at http://kthgridproxy.biotech.kth.se/grid-allegro/

index.html.

Results
Simulation of genotypes in a study of Alzheimers’
disease

As a ‘proof of concept’, this Grid implementation was used

in the simulation analyses of an expanded study on

Swedish families with Alzheimer’s disease (AD).14 The aim

of the study was to identify novel genes involved in the AD

Grid-Allegro
J Andrade et al

695

European Journal of Human Genetics



pathogenesis by performing a genome-wide non-para-

metric linkage analysis on AD families from the relatively

genetically homogeneous Swedish population. The study

was performed on seven different pedigree sets identified

with numbers 1–7 (Table 1). Set 7 constitutes the total

family material and contains 109 families, made up of 470

family members genotyped for 1289 microsatellite mar-

kers. Set 7 was further subdivided into six substrata based

on phenotypic similarity and/or genotypes of the known

Alzheimer’s disease susceptibility gene APOE. Sets 1, 2, 3, 4,

5 and 6 correspond to 10, 14, 18, 24, 45 and 63 families of

the total 109 families respectively.

Simulated genotypes were created using the ‘SIMULATE’

option of the Allegro program, using the same marker map,

allele frequencies and pedigree structures as for the

authentic linkage analyses. A thousand serial simulations

under the null hypothesis of no linkage across the whole

genome were performed for each chromosome, except for
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Figure 1 Grid-Allegro environment setup. The figure shows a schematic system specification of the environment configuration. A full installation of
the Grid stand-alone client package in the local Master node enables communication with the remote Grid workers through the Swegrid/Nordugrid
middleware.

Table 1 Expected run time for 1000 simulations with seven different input data sizes using Allegro v1.1 in a serial execution

Sample set
identifier

Set size no. of
families

Largest pedigree
size in bits

Real run time in minutes for 1
simulation in a single

processor chromosome 1

Projected run time in days for
1000 simulation in a single
processor in one chromosome

1 10 20 18 12.5
2 14 16 20 13.8
3 18 20 21 14.5
4 24 20 28 19.4
5 45 20 31 21.5
6 63 23 42 29.1
7 109 23 86 59.7

The expected run time needed to perform 1000 genotype simulations using Allegro v1.1 with seven different sets of input pedigree data sizes and six
different models for each simulation (mpt exp pairs power, 0.5; spt exp pairs power, 0.5; mpt exp all power, 0.5; spt exp all power, 0.5; mpt par het
and spt par het). The argument ‘mpt’ specifies that multipoint analysis is to be performed. Its alternative, ‘spt’, specifies single point analysis. Run times
are projected based on the real run-time measure needed for a single computer (Linux-based, CPU of 2GHz speed/512Mb RAM) to perform one single
simulation of one chromosome (Chromosome 1). This time is then escalated to project an approximate run time for 1000 simulations.
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the sex chromosomes. Yield was set to 93%, which

corresponds to the actual genotyping success rate obtained

for the genotyping in the genome scan.

Grid-Allegro was used to evaluate the statistical signifi-

cance of the linkage data (Global P-value of 0.001 is highly

significant15), under the null hypothesis of no linkage. The

three highest obtained LOD scores for each simulation data

sets were used as thresholds to estimate their global

significance, that is the number of times that the threshold

value was obtained in the simulations by chance in the

absence of linkage.

In the sets of analyzed families there were large differences

in pedigree sizes, and to compensate for this and not

making the linkage calculations biased due to some large

family’s individual linkage scores, we used the variable

‘power: 0.5’ as the family weighting scheme, as recom-

mended in the Allegro manual. The scoring function that is

the best to use can be discussed, depending on the disease

model.16 We performed the linkage analysis using both of

the scoring functions ‘pairs’ and ‘all’, since the families

under investigation show both apparent dominant disease

model, unclear disease model and a mixture of models.

The major part of the 109 analyzed AD families are of

Swedish origin, and vary in size from small pedigrees with

only two affected siblings to large family trees with at least

six affected individuals and many genotyped siblings with

unknown disease status. The largest pedigree in our study

comprises 20 genotyped persons, resulting in a bit size of

36. Existing multipoint linkage analysis programs based on

Lander-Green HMM like Genehunter,5 Allegro3 and Mer-

lin17 can handle arbitrarily many markers, but are currently

limited to B25-bit pedigrees, irrespective of computational

power available. The bit size of a pedigree is 2n-f-g, where n

is the number of non-founders, f the number of founders

and g the number of ungenotyped founders. Therefore, in

the present study the largest family and two other families

were cut in size in the calculations.

Serial projected run time

The excessive run time expected for a single computer to

perform a complete genome-wide linkage analysis was

illustrated using a standard serial execution of Allegro v1.1

in a single processor (CPU of 2GHz speed/512Mb RAM).

The real time needed to perform a single simulation for

seven different sets of input pedigree data sizes and six

different models for each simulation was measured (Table 1),

and then used to project the expected run time for 1000

simulations. This measure shows that even for pedigrees of

small to moderate sizes, the projected time needed to

perform thousands of simulations constitute a technologi-

cal bottleneck using ordinary computers. This is a result of

the exponential increase in run time of Allegro for a linear

increase in the number of members of a pedigree. As shown

in Table 2, on this scale the number of markers has no

significant impact on the total runtime.

In the application described here (Alzheimer’s disease), a

minimum of 22 000 simulations in total (1000 for each

chromosome, the X chromosome was not included in the

simulation analysis) were required to achieve an estimation

for global P-value of 0.001. The projected execution time

for the accumulated total material of this study using

Allegro v 1.1 becomes approximately 3.2 years on a single

up-to-date computer (Table 2).

Grid-allegro performance

To define a model of performance, theoretical speed-up on

P nodes was calculated to evaluate the expected improve-

ment in run time achieved by the ‘Gridification’ of Allegro

v 1.1. The theoretical speed-up can be calculated as

Sp ¼
TS
1

Tp

where T1
S is the expected calculated sequential run time to

perform the simulations. For the 22 000 simulations using

Table 2 Projected run time for a complete genome wide
linkage analysis, based on real run-time measures using
Allegro v1.1

Chromosome
No. of
markers

Real run time in
minutes for 1
simulation in a
single processor

Projected run
time in days for

1000
simulations in a
single processor

Chr 1: 88 86 59.7
Chr 2: 86 85 59.0
Chr 3: 76 80 55.5
Chr 4: 75 80 55.5
Chr 5: 74 79 54.8
Chr 6: 64 70 48.6
Chr 7: 78 81 56.2
Chr 8: 59 78 54.1
Chr 9: 57 78 54.1
Chr 10: 56 78 54.1
Chr 11: 58 79 54.8
Chr12: 59 80 55.5
Chr 13: 38 76 52.7
Chr 14: 51 80 55.5
Chr 15: 50 79 54.8
Chr 16: 39 76 52.7
Chr 17: 50 79 54.8
Chr 18: 40 76 52.7
Chr 19: 47 77 53.4
Chr 20: 38 76 52.7
Chr 21: 21 75 52.0
Chr 22: 24 74 51.3

Total projected
time in days/years:

1195.8/3.2

Projected Allegro v1.1 run time needed to perform 1000 simulations
for each chromosome in an up-to-date single processor (Linux-based,
CPU of 2GHz speed/512Mb RAM), using the largest input data size
corresponding to 109 families with largest pedigree size of 23 bits. Real
timings for one single simulation were performed and then multiplied
by 1000 to obtain the expected run -time for a complete genome wide
linkage analysis. The exact run-time can vary in different computers,
depending on hardware configurations.
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the largest available input data set (109 families with the

largest pedigree size of 23 bits), T1
S is 3.2 years, (see Table 2).

Tp is the Grid-Allegro execution time for the same data,

clustered in P¼50, 200, 400 and 600 Grid processors in

Swegrid. Because we are submitting jobs of equal sizes to

the Grid workers, one may expect nearly linear increase in

speed-up as the number of computation nodes increases.

Figure 2 shows the theoretical and real execution times for

identically clustering the same data set on remote Grid

nodes of different sizes.

The total Grid execution time for a particular task is

defined by the total Grid latency (the time needed to

submit a complete set of jobs (Input), and collect a

complete set of results (Output)), the accumulated waiting

time in case a job or a set of jobs are delayed in Grid queue

systems and the real execution time on the nodes. Grid

latency increases linearly with the number of Grid jobs, but

the total Grid run time for a particular task decrease

proportionally with the amount of jobs that can be

processed in parallel in the Grid workers. Since the

executions on the nodes are overlapping (processes are

run in parallel but started sequentially), and hardware

configurations may differ between nodes, the actual Grid

execution time is difficult to calculate theoretically before-

hand. Run-time measures were performed using external

Linux timers. For the largest data set corresponding to

sample set 7 with 109 families and the largest pedigree size

of 23 bits, the calculated speed-up was 455-fold in 600 Grid

nodes, 313 in 400 nodes, 172 in 200 nodes, and 44 in 50

nodes. We find that the total run time at different

submission time-points remain stable. The average of the

real execution time to perform 22000 simulations on 600

remote Grid nodes (2.6 days, Table 3) represents a

significant improvement, compared with the projected

execution time to perform the same number of simulations

in an up-to-date single processor (1193.5 days, Table 1).

The theoretical 600-fold speed-up using 600 nodes is not

achieved mainly due to Grid latency.

Discussion
Multipoint linkage analysis applications that are based on

hidden Markov models scales exponentially with the

pedigree size, and while algorithm improvements in the

Allegro program has resulted in significantly shorter run

times than Genehunter, the computational requirements

still creates a bottle neck in genome-wide linkage analysis

with many markers and large pedigrees. Performing a

sufficient number of simulations is important to evaluate if

a positive linkage signal obtained in a specific chromoso-

mal region reaches the threshold of global significance.

Some, but far from all institutes, possess or have access to

the computational resources required, and in the absence

of sufficient computational resources a reduction of the

number of simulations performed is forced, which can lead

to the estimation of insufficient global significance levels

and false positive linkage claims.

In the Alzheimer’s disease gene mapping project de-

scribed in this work, even a modest number of simulations

(1000 simulations) for the larger pedigree sizes creates a

computational load that is incompatible with standalone

CPU computers, prompting us to consider an alternative

solution that distribute the time-consuming tasks subdi-

vided into a set of smaller jobs executed in parallel with

existing algorithms and software. Our developed Grid-

Allegro implementation makes it possible to evaluate the

level of significance of variation in different simulation

parameters, as several thousands of simulations with

different parameter calibrations can be done in the Grid,

irrespective of computational demand. The results can be

compared afterwards to test the robustness of the different

statistical models that are available in Allegro software.

To our knowledge, there are currently no publications

describing parallel or distributed execution software

approaches for genome-wide linkage analysis with large

pedigree sizes.

We have here demonstrated how it is possible to exploit

the advantages of the computational Grid to facilitate

scaled-up analyses using existing algorithms and software

for high computationally demanding task. Grids are cost-

efficient resources that could have much use in genetics

research, particularly for larger projects. Grids enable the

sharing, selection, and aggregation of a wide variety of

resources including computers, supercomputers, storage

Theoretical run-time:Total run-time:Real run-time:Latency:Waiting time:

600 400 200 50
# of Grid nodes

Grid-Allegro performance

30.00

25.00

20.00

15.00

10.00

5.00

0.00

R
u

n
-t

im
e 

in
 d

ay
s

Figure 2 Grid-Allegro performance in Swegrid and predicted run-
time. The figure shows the real Grid-Allegro run-time in days needed
to perform 22000 simulations on data from a complete genome-wide
linkage analysis, using the largest available input data set (sample set 7
with 109 families and with the largest pedigree size of 23 bits). Nearly
linear increase in speed-up is achieved as the number of Grid nodes is
increased. The exact real Grid run time can vary depending of
hardware configuration in different Grid nodes. Waiting time can vary
depending on Grid work load conditions. Theoretical run-time was
calculated by dividing the total projected serial run-time (Table 2) by
the number of Grid workers.
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systems, data sources, and specialized devices that are

geographically distributed and owned by several different

organizations. It offers CPU and data-handling capabilities

that far exceed what can be attained within ordinary or

even well-supported research facilities.11,12

However, concerning usability, there has been a

clear need to ease the interface between the Grid and the

users. Especially to the biologically oriented researcher

a current obstacle is the middleware that is still raw

and hardly accessible to the non-computer scientist. The

job submission process is relatively complex and non-

automated. A Grid user has had to deal with the

middleware command line interface to submit jobs

manually, periodically check the resource broker for the

status of the job, and finally retrieve the raw data file.

For an application in biological sciences where available

computer expertise may not always run as deep, more user-

friendly solutions are needed. With our programs and

procedural descriptions, these tasks are automated and

simplified.

Grid-Allegro involves temporary installations of the

Allegro executables and datasets on remote nodes at

submission, followed by uninstallation after the return of

results. For the Allegro executable, the time for distribution

and installation time to the nodes is negligible; however,

for executable files of very large size, this could theoreti-

cally introduce an increase in overall latency and run time.

As our strategy avoids the use of predefined run-time

environments (preinstalled software and databases at

specific Grid-nodes), it greatly improves the usability as

no knowledge of the Grid structure is required of the users.

This solution is also attractive from a Grid administrator’s

point of view as no resources are occupied on the nodes

between submissions. Furthermore, from a user perspec-

tive, it also limits the interaction with Grid administrators

for setup, installation and maintenance of run-time

environments. Given the dynamic status of the Grid

environment where clusters at some locations may have

been added or removed between submission times, a

predefined run-time environment would be more imprac-

tical and likely restrict the number of possibly allocated

Grid nodes/workers.

There are several factors that could affect Grid-Allegro

performance. Most importantly, the latency time in a Grid

environment will increase directly proportional to the

number of jobs that has to be submitted to the workers.

In our work, the latency is increased by the requirement

for serial submission of jobs that is part of the Grid

Table 3 Real Grid-Allegro run times in minutes for a complete genome-wide linkage analysis, using 600 nodes in Swegrid

Chromosome
No. of
markers

Waiting
time 1 Latency 1

Real run
time 1

Total-run-
time 1

Waiting
time 2 Latency 2

Real run
time 2

Total-run-
time 2

Chr 1: 88 0.00 140.00 143 562.00 48.00 140.00 145.00 613
Chr 2: 86 142 143.00
Chr 3: 76 137 137.00
Chr 4: 75 2.00 140.00 137 680.00 0.00 140.00 138.00 676
Chr 5: 74 136 136.00
Chr 6: 64 127 126.00
Chr 18: 40 138 136.00
Chr 7: 78 8.00 140.00 135 689.00 76.00 140.00 135.00 754
Chr 8: 59 135 134.00
Chr 9: 57 135 133.00
Chr 10: 56 136 136.00
Chr 11: 58 30.00 140.00 137 846.00 30.00 140.00 137.00 845
Chr 12: 59 133 132.00
Chr 13: 38 137 137.00
Chr 14: 51 136 135.00
Chr 16: 39 133 134.00
Chr 15: 50 0.00 140.00 136 939.00 2.00 140.00 136.00 938
Chr 17: 50 133 134.00
Chr 19: 47 134 134.00
Chr 20: 38 133 131.00
Chr 21: 21 132 132.00
Chr 22: 24 131 129.00

Total 40.00 700.00 2976.00 3716.00 156.00 700.00 2970.00 3826
Real run-time in

days
2.58 2.66

Table 3 shows representative real Grid-Allegro run-time measures for data on a complete genome-wide linkage analysis (1000 simulations for each
chromosome), using the largest input data size corresponding to 109 families with largest pedigree size of 23 bits. In the different run-time measures
performed, the total run time was found to be stable but the waiting time in the Grid queue system can vary depending on work load conditions, as
shown here for two runs. As Grid latency time is directly proportional to the number of Grid jobs, chromosomes were conveniently grouped into five
data sets to be submitted in parallel to the Grid.
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administration principles, while downloads can be done in

parallel (forked download), which of course speeds up the

process. However, in the case of the largest dataset, the

latency of less than 12h for a Grid job that takes 63h in

total but otherwise would consume over 3 years on a single

computer (Table 3) could be considered negligible.

Table 4 Selected Major Grid application and deployment projects in Science and Engineering

Name Domain Support Focus

Crossgrid crossgrid.org European Union Develop, implement, and exploit new Grid
components for interactive compute and data-
intensive applications

DATATAG datatag.org European Union Research and technology development for a
transAtlantic Grid

European Union (EU)
Datagrid

eu-datagrid.org European Union Create and apply an operational grid for
applications in high-energy physics,
environmental science, bioinformatics

Damien www.hlrs.de/
organization/pds/
projects/damien

European Union Develop building blocks for a middleware
environment for distributed simulation and
visualization

European Grid of Solar
Observatories (EGSO)

www.mssl.ucl.ac.uk/grid/
egso

European Union Create a virtual archive by federating solar data
centers scattered across Europe into a Data Grid

Eurogrid and Grid
Interoperability (GRIP)

eurogrid.org European Union Create technologies for remote access to
supercomputer resources and simulation codes;
in GRIP, integrate with Globus

Grid Resources for
Industrial Applications
(GRIA)

European union Application-driven Grid testbed focused on
outsourcing of computational services for
structural analysis and digital film post
production

DOE Science Grid sciencegrid.org Department of Energy,
Office of Science USA

Create an operational Grid providing access to
resources and applications at US DOE science
laboratories and partner universities

Earth System Grid (ESG) earthsystemgrid.org Department of Energy,
Office of Science USA

Delivery and analysis of large climate model
datasets for the climate research community

Fusion Collaboratory fusiongrid.org DOE Office of Science Create a national computational collaboratory
for fusion research

Globus globus.org DARPA, DOE, NASA,
National Science
Foundation

Research on Grid infrastructure and tools;
development of community-based, open
source, open architecture Globus Toolkit

(GRIDS) Center grids-center.org National Science
Foundation

Integration, deployment, support of the NSF
Middleware Infrastructure for research &
education

Grid Application
Development Software

hipersoft.rice.edu/grads National science
foundation

Research into program development
methodologies for Grid applications

Grid Physics Network
(GriPhyN)

griphyn.org National science
foundation

Technology R&D for data analysis in physics
experiments: ATLAS, CMS, LIGO, SDSS

Information Power Grid ipg.nasa.gov NASA Create and apply a production Grid for
aerosciences and other NASA missions

Network for Earthquake
Engineering Simulation
Grid

neesgrid.org National Science
Foundation

Create and apply a production Grid for
earthquake engineering

National Virtual
Observatory (NVO)

www.srl.caltech.edu/nvo National Science
Foundation

Create and apply production Grids for data
analysis in astronomy

Particle Physics Data Grid
(PPDG)

ppdg.net DOE Office of Science
USA

Create and apply production Grids for data
analysis in high-energy and nuclear physics
experiments

Southern California
Earthquake Center 2

scec.org National Science
Foundation

Full geophysics modeling using Grids and
knowledge-based systems

Teragrid teragrid.org National Science
Foundation

US science infrastructure linking four major
resource sites at 40Gb/s

GridPP gridpp.ac.uk UK eScience Program Create and apply an operational grid within the
UK for particle physics research

Mygrid mygrid.org.uk UK eScience Program Develop and apply eScience workbench for
bioinformatics applications

Reality Grid UK eScience Program Enable the realistic modelling of complex
condensed matter systems at the molecular and
mesocale levels

UK Grid Center grid-support.ac.uk UK eScience Program Support center for Grid projects within the UK
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Geographical distributions and local area networks

conditions could also create a small increase in the latency

time. Waiting time in the Grid queue system may also vary

depending of the amount of previously submitted jobs

to the Grid environment. A way of overcoming excessive

waiting times in the Grid queue systems has been

implemented in Grid-Allegro by defining a cut-off of

maximum allowed waiting time. If this time (by default

set to 1h but is modifiable) is exceeded for a specific job,

Grid-Allegro will kill this specific job in the queue system

and resubmit it to another available Grid node in a

different Grid cluster. For the largest dataset available in

this study, several run-time experiments were performed to

test that the total run time for a given Grid node size

remained stable at different submission times. This shows

that at least in SweGrid, waiting times are currently not an

issue. Also when a relatively small number of Grid nodes

is accessed, the improvements in run time (27 days for 50

nodes) compared with a serial execution in a single

computer (3.2 years) are significant, however with a run

time still 24 days more than in the 600 node example

although latency would be reduced by a factor of 12 when

using only 50 nodes. This suggests that Grid-based

implementations are cost- and time-efficient alternatives

compared with acquiring and setting-up local small

computer clusters. Most genetic research departments do

not own or have direct access to larger clusters of

computers. Moreover, cluster computing requires the

development of implementations based on the message

passing interface (MPI) library specification. This task is

not trivial even for computer experts in comparison with

the alternative of implementing existing algorithms and

compilations on external Grids. No MPI-based software

implementation for linkage analysis is available according

to our knowledge.

A large number of Grids have been established to address

the rapidly growing needs of the high-performance

scientific computing community. Globus software toolkit

is the most popular Grid middleware used for building

Grid systems and applications around the world. A list of

selected major Grid applications and deployment projects

in science and engineering is shown in Table 4. It is

possible to migrate our application to any Globus- based

Grid environment with no or very minor modifications.

Many of these Grid initiatives are initiated and funded by

governments and non-profit research organizations with

the aim of providing large- scale computational resources

to scientific and academic research. Access is given upon

joining a virtual organization and allocations are granted

to the members on a project basis according to their

scientific contribution and importance as viewed by peer

researchers. Administrative policies can define an upper

limit for computational resources and run-time quota that

can be allocated to a certain user. Current policies are based

on a queuing principle of equal opportunity at a specific

submission time for Grid users granted access to the same

nodes, irrespective of the total run time. Recently, market-

based automatic resource allocation solutions have been

demonstrated that could enable a more efficient allocation

and use of the available resources at any specific run time

if implemented on a broader scale.18 Grid security

implementations are build on public key infrastructure,19

in which each Grid user is authenticated by processing a set

of credential comprised of a cryptographic key and a

certificate, the authentication process results in the gen-

eration of a unique session key, which is used to protect

further communication. However, recent review of security

issues in large distributed systems20 indicated that there are

many issues still to be considered. Earnest and conscien-

tious efforts are made in the different Grid organizations,

and new mechanisms are being proposed to increase the

Grid security.21–23

The one-time task to establish access to resources on a

Grid (joining a Grid virtual organization, setup a local

proxy server, installation of the standalone Grid client,

installation of the Grid certificate, and so on) according to

the detailed procedures on our website should comprise a

few days for someone with basic knowledge in Linux

system administration. The availability of our scripts and

procedural descriptions could enable a broader use of Grid

technology by other research groups in genetics. Impor-

tantly, this Perl-based Grid-Allegro implementation is

generic, where the Allegro executable can easily be

replaced by other software tools to facilitate analyses

suitable for parallelization, examples of such programs

are among others: ANALYZE,24 LINKAGE package,25 MER-

LIN17 and ARLEQUIN.26

The scripts and procedural documentation are freely

available from the authors at: http://kthgridproxy.

biotech.kth.se/grid-allegro/index.html. However, a license

for Allegro v1.13 (which is available free for non-commer-

cial use) needs to be obtained independently (e-mail:

allegro@decode.is).

Conclusions

In this study, a high-performance execution for simulation

of genetic linkage data has been presented. On a genome

scale, these operations take a prohibitively long time. By

‘griddifying’ the existing executables and software package,

computation times are reduced from years to days with

basically no investment in hardware. This allows the

features of Allegro3 to be fully exploited in, for example,

genome-wide scans. As we show, the use of Grid computing

is a low-cost high-performance alternative when comput-

ing needs in bioinformatics go beyond institution hard-

ware capabilities.

Bioinformatics analysis of the massive quantities of

molecular data produced by complete genome sequencing

projects is one of the major challenges of the following

years. Facing this challenge, the use of distributed Grid
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environments is and efficient solution to distribute and

integrate up-to-date databanks, algorithms and storage

resources for genomics.
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