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A test of homogeneity of Hardy-Weinberg
disequilibrium across strata
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For genotype data being sampled from several strata with different allele frequencies, it is necessary to
verify the assumption of homogeneity of Hardy–Weinberg disequilibrium across strata before testing
Hardy–Weinberg law across strata. In practice, disequilibrium can be measured via fixation coefficients (ie,
ratios of genotypic frequencies) or disequilibrium coefficients (ie, differences of genotypic frequencies).
Test for homogeneity of Hardy–Weinberg disequilibrium using data from several populations has been
derived according to fixation coefficients. In this article, using the likelihood score theory extended to
nuisance parameters, we derive a homogeneity score test for comparing disequilibrium coefficients across
several independent strata. Simulation results demonstrate that the homogeneity score test performs
satisfactorily in the sense that its empirical size seldom exceeds the pre-chosen nominal level by more than
10% even for small sample sizes. Corresponding power and sample size formulae are provided as well. We
illustrate our test with a real glyoxalase genotype data set.
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Introduction
The law of Hardy–Weinberg equilibrium (HWE) states that in

a large random mating population that is not affected by the

evolutionary processes of mutation, migration, or selection,

both the allele frequencies and the genotype frequencies are

constant from generation to generation.1,2 Furthermore, the

genotype frequencies are related to the allele frequencies by

the square expansion of those allele frequencies. In other

words, the law of HWE states that under a restrictive set of

assumptions, it is possible to calculate the expected frequen-

cies of genotypes in a population if the frequency of the

different alleles in a population is known. The original

descriptions of HWE become an important landmark in the

history of population genetics,3 and it is now a common

practice to verify whether observed genotypes conform to

Hardy–Weinberg expectations.4,5

In a diallelic locus with alleles A1 and A2 across K strata,

let the genotypic array of the kth (k¼ 1,y,K) stratum be

p11kA1A1 þ p12kA1A2 þ p22kA2A2

Let pk be the allelic frequency of A1 in the kth stratum and

qk¼1�pk (k¼1,y,K). Populations with genotypic frequen-

cies satisfying p11k¼ pk
2, p12k¼2pkqk, and p22k¼ qk

2 (k¼1,y,K)

are said to be in HWE at the locus under consideration. In

studies of HWE, there are two widely used coefficients,

namely the fixation and disequilibrium coefficients.6 For

stratum k (k¼1,y,K), the fixation and disequilibrium

coefficients are defined by fk ¼ 1� p12k=ð2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p11kp22k

p Þ and

Dk¼ pkqk�p12k/2, respectively. Hence, the problem of testing

HWE when individuals are sampled from several strata is

equivalent to testing one of the following hypotheses:

H0
0 : yk ¼ 0 for all k ¼ 1; :::;K versus

H0
1 : yk 6¼ 0 for some k;

ð1Þ

where yk¼ fk orDk. For statistical tests based on disequilibrium

coefficient, one can refer to the work of Haldane7 and Smith.8
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For test procedures based on functions of fixation coefficients

(eg, (1�fk)
2), one can consult the work of Emigh,9 Troendle

and Yu,10 and Nam.11

It is noteworthy that any statistical procedure for testing

the null hypothesis in (1) assumes that the measure of

disequilibrium (ie, yk) is constant across the strata. In this

regard, it is important that one should consider testing the

assumption of homogeneity of the measure of disequilibrium

across strata before any testing of the null hypothesis in (1).

For this purpose, we consider the following hypotheses:

H0 : y1 ¼ . . . ¼ yk versus H1 : Not all y0ks are equal ð2Þ

Olson and Foley12 proposed a large-sample test and an

exact test for verifying the null hypothesis H0 via a function

of fixation coefficients, (1�fk)
2. They also approximate the

P-value of the exact test using a Markov chain Monte Carlo

approach. Although the use of fixation coefficients to

describe departures from HWE has some merit, it has the

disadvantage that these parameters are estimated as ratios

of genotypic frequencies. It is difficult to study sampling

properties of ratio statistics.4,6 Besides, functions of fixation

coefficients such as (1�fk)
2 may possess infinite upper

bound. On the other hand, there are advantages in working

with a composite kind of quantity such as the disequili-

brium coefficient. This is simply the difference between a

frequency and its values expected when there are no

association between alleles. Moreover, it is easy to show

that disequilibrium coefficient Dk satisfies max{�pk
2,

�qk
2}pDkppkqk. Unfortunately, test of homogeneity of

disequilibrium coefficients across several strata has not

been considered in the literature yet. Therefore, the

objective of this study is to develop a new homogeneity

score statistic for testing the null hypothesis in (2) based on

disequilibrium coefficients. We first develop the theory and

method and then demonstrate the advantage of our

method over the method proposed by Olson and Foley12

via Monte Carlo simulation studies. We also derive the

approximate power and sample size formulae, which are

necessary in design of studies. Finally, we illustrate our test

with a real glyoxalase genotype data set.

Method
Homogeneity test

Let Xijk (ipj¼1, 2 and k¼1,y,K) be the number of

individuals with genotype AiAj in the kth population with

nk¼X11kþX12kþX22k. Let M(nk, {pijk}) denote the trinomial

distribution with parameter vector (p11k, p12k, p22k). Hence,

we have {Xijk: i, j¼1, 2; ipj}BM(nk, {pijk}) for k¼1,y,K. In

this article, we are interested to test the homogeneity

hypothesis in (2) with yk¼Dk. That is,

H0 : D1 ¼ 	 	 	 ¼ Dk versus H1 : Not allD0
ks are equal;

where Dk¼ pkqk�p12k/2. All subsequent results are obtained

under the assumptions that K is fixed and nk is sufficiently

large for k¼1, 2,y,K.

Note that p11k¼ pk
2þDk, p12k¼2(pkqk�Dk) and

p22k¼ qk
2þDk, the log-likelihood for the kth strata can be

expressed in terms of Dk and pk (k¼1,y,K) as

lkðDk; pkÞ ¼x11k lnðp2k þDkÞ þ x12k lnð2ðpkqk �DkÞÞ
þ x22k lnðq2k þDkÞ

Let D denote the common disequilibrium coefficient under

H0 and p¼ (p1,y, pK)’ the nuisance parameter vector.

Under H0, the total log-likelihood for all K strata is given by

lðD;pÞ ¼
XK
k¼1

lkðD; pkÞ

Hence, the efficient scores for the kth stratum (ie, the first-

order derivatives of lk(D,pk) with respect to D and pk) are

given by

HkDðD; pkÞ ¼
qlkðD; pkÞ

qD
¼ x11k

p2k þD
� x12k
pkqk �D

þ x22k
q2k þD

;

HkpkðD; pkÞ ¼
qlkðD; pkÞ

qpk
¼ 2x11kpk

p2k þD
þ x12kð1� 2pkÞ

pkqk �D
� 2x22kqk

q2k þD

Let D̂ and p̂ be the maximum-likelihood estimates (MLEs)

of D and p under the null hypothesis H0. In this case, D̂ and

p̂ must satisfy the following Kþ1 equations:XK
k¼1

HkDðD̂; p̂kÞ ¼ 0;

and

HkpkðD̂; p̂kÞ ¼ 0; k ¼ 1;2; . . . ;K

Denote

VkDDðD; pkÞ ¼
qHkDðD; pkÞ

qD
¼ � x11k

ðp2k þDÞ2

� x12k

ðpkqk �DÞ2
� x22k

ðq2k þDÞ2
;

VkDpkðD; pkÞ ¼
qHkDðD; pkÞ

qpk
¼ � 2x11kpk

ðp2k þDÞ2

þ x12kð1� 2pkÞ
ðpkqk �DÞ2

þ 2x22kqk

ðq2k þDÞ2
;

and

VkpkpkðD; pkÞ ¼
qHkpkðD; pkÞ

qpk
¼ 2x11kðD� p2kÞ

ðp2k þDÞ2

þ x12kð2D� p2k � q2kÞ
ðpkqk �DÞ2

þ 2x22kðD� q2kÞ
ðq2k þDÞ2

In addition, denote IkDjpk ¼ IkDD � I2kDpk
=Ikpkpk , where

IkDD ¼ �EðVkDDÞ ¼
nkðpkqk þDÞ

ðp2k þDÞðpkqk �DÞðq2k þDÞ
;

IkDpk ¼ �EðVkDpkÞ ¼
2nkð2pk � 1ÞD

ðp2k þDÞðpkqk �DÞðq2k þDÞ
;
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and

IkPkPk ¼ �EðVkPkPkÞ

¼ 2nk
ðp2k þDÞðq2k þDÞ2 þ ðpkqk �DÞ3 þ ðp2k þDÞ2ðq2k þDÞ � 4D2

ðpk2 þDÞðpkqk �DÞðq2k þDÞ
:

Hence, the likelihood score test for testing H0:

D1¼?¼DK is given by

X2 ¼
XK
k¼1

H2
kDðD̂; p̂kÞ

IkDjPkðD̂; p̂kÞ
;

which is asymptotically distributed as a w2 variate with K�1

degrees of freedom under H0. Unfortunately, we note that

D̂ and p̂ cannot be expressed in closed form and this makes

the likelihood score test X2 less appealing in real applica-

tions. To over this issue, using the theory of homogeneity

score test extended to nuisance parameters,13 we consider

the following modified score statistic:

X2� ¼
XK
k¼1

H2
kDðD�; p�kÞ

IkDjpkðD�; p�kÞ
�

PK
k¼1

H2
kDðD�; p�kÞ

� �2
PK
k¼1

IkDjpkðD�; p�kÞ
; ð3Þ

where D* and p* are any consistent estimators of D and

p, respectively. To this end, we choose D* to be
Pk

k¼1

ð4x11kx22k=x212k � 1Þ=
Pk

k¼1 ð4n2
k=x

2
12kÞand p*k be the solution

to the following equation:

HkpkðD�; pkÞ �
2x11kpk
p2k þD� þ

x12kð1� 2pkÞ
pkqk �D� � 2x22kqk

q2k þD� ¼ 0;

or equivalently the following quintic polynomial

equation,

a0 þ a1pk þ a2p
2
k þ a3p

3
k þ a4p

4
k þ a5p

5
k ¼ 0;

where a0¼ x12kD*(1þD*)þ2x22k(D*)2, a1¼�2(nkD*

(1þD*)þx12kD*), a2¼6nkD*þ2x11kþ x12k, a3¼�2(2nkD*þ
nkþ2x11kþ x12k), a4¼4nkþ 2x11kþ x12k, and a5¼�2nk.

Here, D* is analogous to the Mantel–Haenszel estimator14

and is a consistent estimator to D. However, it is not an

efficient estimator to D in general. The proof of consistency

and the condition to attain asymptotic efficiency for D* is

given in Appendix A. We note that the calculation of IkDjpk
in (3) could be tedious. Nonetheless, it is easy to show that

IkDjpk is simply given by nk/wk(D, pk) with wk(D, pk)¼ (pk
2þD)

(qk
2þD)2þ 2(pkqk�D)3þ (pk

2þD)2(qk
2þD)�4D2 (see Appendix

B for the proof). Similarly, X2* is asymptotically distributed

as a w2 variate with K�1 degrees of freedom under H0.

Therefore, the homogeneity hypothesis H0 is rejected at

level a if X2*XwK�1,(1�a)
2 , where wK�1,(1�a)

2 , is the 100
 (1�a)
percentile point of the w2 distribution with K�1 degrees of

freedom. Finally, it is noteworthy that if the consistent

estimators of D and p are the constrained maximum-

likelihood estimators under H0, then the second term of (3)

vanishes, since
P

k¼1
K HkD(D*, pk*)¼0, and (3) reduces to

the likelihood score statistic.

Asymptotic power and sample size formulae

In this section, we aim to derive the asymptotic power and

sample size formulae15 based on X2*. For these purposes,

we assume nk¼ nbk for some n and bk40. Let D̄k and p̄k be

the true parameter values for Dk and pk under the

alternative H1, where k¼1, 2,y,K and D̄kaD̄j for some

kaj. Hence, the asymptotic power of the homogeneity

score test X2* at a level is given by

PrðX2�4w2K�1;ð1�aÞjH1Þ ¼ Prðw2K�1ðdÞXw2K�1;ð1�aÞÞ; ð4Þ

where wK�1
2 (d) denotes the non-central w2 distribution with

K–1 degrees of freedom and the non-centrality parameter d
is equal to

d ¼n
XK
k¼1

bk
�p2
k
þ �Dk

p2
k
þD

� 2 �pk�qk�Dkð Þ
pkqk�D þ �q2

k
þ �Dk

q2
k
þD

� �h i2
bk=wk D; pkð Þ

8><
>:

�

PK
k¼1

bk
�p2
k
þ �Dk

p2
k
þD

� 2 �pk �qk� �Dkð Þ
pkqk�D þ �q2

k
þ �Dk

q2
k
þD

� �� �2
PK
k¼1

bk=wk D; pkð Þ½ �

9>>>>=
>>>>;
;

with q̄k¼1�p̄k,

D ¼
XK
k¼1

�p2k þ �D
� �

�q2k þ �D
� �

�pk�qk � �Dk

� �2 � 1

 !
=
XK
k¼1

1= �pk�qk � �Dk

� �2�
;

�

and pk is the solution to the following equation:

�a0 þ �a1pk þ �a2p
2
k þ �a3p

3
k þ �a4p

4
k þ �a5p

5
k ¼ 0;

where ā0¼2(p̄kq̄k�D̄k)D(1þD)þ2(q̄k
2þ D̄k)D

2, ā1¼�2D

(1þD)þ4(p̄kq̄k�D̄k)D, ā2¼6Dþ2p̄k, ā3¼�2(2Dþ1þ p̄k),

ā4¼4þ p̄k, and ā5¼�2.

As a result, the desirable sample size n required to attain

the power at 1�b with D̄k and p̄k being the true parameter

values for Dk and pk under the alternative H1 at nominal

level a can be determined from the following equality:

w2K�1;bðdÞ ¼ w2K�1;ð1�aÞ;

where wK�1,b
2 (d) is the 100
 b percentage point of the

non-central w2 distribution with K�1 degrees of freedom

with non-centrality parameter being d. The value of n

can be readily obtained by solving the equation given

in (4).

Simulation
We evaluate the performance of our proposed homogene-

ity score test in terms of type I error rate and power. For

type I error rate, we include the homogeneity test proposed

by Olson and Foley12 in our comparison study. In their

case, they adopted a function of fixation coefficients as the

measure for Hardy–Weinberg disequilibrium. Specifically,

they were interested to test the homogeneity hypothesis in

(2) with yk¼ (1�fk)
2. That is,

H0
* : (1�f1)

2¼?¼ (1�fK)
2 versus H1

*: Not all (1�fk)
2 are

equal, and their proposed statistic for testing the above
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hypotheses is given by

T2
homog ¼

Xk
k¼1

h2
kðŷÞ

V̂ar½hkðŷÞ�
; ð5Þ

where y¼ (
P

k¼1
K ((x12k

2 �x12k)/(2(2nk�1)))/(
P

k¼1
K ((2x11k

2 �
x22k)/(2nk�1))), hk(y)¼ x12k

2 �x12k�4yx11kx22k, and Vâr

[hk(y)]¼ 4(x11k
3 �3x11k

2 þ2x11k)(1�y)þ2(x11k
2 �x11k) (2nky�3y

þ2) for k¼ 1,y,K. We would like to point out here that

our proposed homogeneity score test (ie, X2*) and Olson

and Foley’s test (ie, Thomog
2 ) can be fairly comparable only

when yk¼0 for k¼1,y,K in the null hypotheses H0 and

H0* (ie, H’0 in (1)). In the present comparisons, we consider

both the asymptotic (denoted as Thomog,a
2 ) and exact

(denoted as Thomog,e) versions of Thomog
2 . For the implemen-

tation of Thomog,e
2 , one can refer to Olson and Foley (1996,

p 975). Here, we investigate type I error rates of X2* and

Thomog,a for small (eg, nk¼20 and 30) to large sample sizes

(eg, nk¼50–200) when yk¼0 for k¼1,y,K. As Thomog,e
2 is

computationally intensive for large sample sizes, we

consider its small-sample behavior only. Results of Monte

Carlo experiments with 5 000 repetitions for different

designed allele probabilities p’ks with k¼1,y,K and K¼3

and 5 at 0.05 nominal level are summarized in Tables 1 (for

small sample sizes) and 2 (for moderate to large sample

sizes).

As expected, the exact test T2
homog,e is always conservative

(ie, its type I error rates are always less than the pre-

assigned nominal level). The empirical type I error rates of

our asymptotic homogeneity score test X2* are satisfacto-

rily close to the nominal 0.05 level for allelic probabilities

being bounded away from 0 and 1, whereas those of the

Thomog,a
2 are generally liberal (eg, more than 11 times of the

given nominal level) even for large sample sizes. It is

noteworthy that X2* appears to be conservative than

Thomog,e
2 , for small allele probabilities (eg, pk’s being 0.1).

However, the conservativeness of X2* vanishes with an

increase in sample sizes and the computation of X2* is

much more simpler than Thomog,e
2 .

In view of the above observations, we prefer the

proposed homogeneity score test X2* (based on disequili-

brium coefficients) to the existing homogeneity tests based

on function of fixation coefficients (ie, Thomog,a
2
, and

Thomog,e
2 ). Hence, we exclude Thomog,a

2
, and Thomog,e

2 in all

subsequent evaluation and discussion. Table 3 further

summarizes the type I error rate of X2* for some non-zero

(common) disequilibrium coefficients (ie, Da0) under

different settings. Again, the propose homogeneity score

test performs satisfactorily in the sense that its empirical

type I error rates are close to the pre-chosen nominal level

and seldom exceed the nominal level by more than 10%.

For power performance, the parameters and sample size

are quite similar to those adopted in Table 3, except that

{Dk} are now specifically designed under H1. For this

purpose, we set Dk¼D0þD(k�1). For K¼3, we consider:

(i) D0¼�0.03, D¼ 0.03 and (ii) D0¼�0.05, D¼0.05. For

K¼5, we consider: (i) D0¼�0.06, D¼ 0.03 and (ii)

D0¼�0.1, D¼0.05. The results are reported in Table 4.

From the simulation results, the power of X2* increases

with the sample size n or D. For those settings with the

same {Dk}, the one with varied allele probabilities across

Table 1 Empirical type I error rates for X2*, Thomog,a
2 and Thomog,e

2 under H0
0 when K¼3 and K¼5

n p X2* Thomog,a
2 Thomog,e

2

20, 20, 20 0.5, 0.5, 0.5 0.058 0.133 0.041
0.5, 0.4, 0.3 0.047 0.141 0.041
0.5, 0.3, 0.1 0.046 0.215 0.033
0.3, 0.3, 0.3 0.029 0.144 0.035
0.3, 0.2, 0.1 0.023 0.228 0.024
0.1, 0.1, 0.1 0.006 0.420 0.010

30, 30, 30 0.5, 0.5, 0.5 0.055 0.104 0.046
0.5, 0.4, 0.3 0.047 0.113 0.046
0.5, 0.3, 0.1 0.045 0.144 0.041
0.3, 0.3, 0.3 0.033 0.107 0.041
0.3, 0.2, 0.1 0.026 0.141 0.027
0.1, 0.1, 0.1 0.004 0.229 0.011

20, 20, 20, 20, 20 0.5, 0.5, 0.5, 0.5, 0.5 0.059 0.192 0.048
0.5, 0.4, 0.3, 0.2, 0.1 0.041 0.294 0.049
0.5, 0.3, 0.1, 0.3, 0.5 0.047 0.280 0.047
0.3, 0.3, 0.3, 0.3, 0.3 0.021 0.223 0.047
0.1, 0.3, 0.5, 0.3, 0.1 0.032 0.363 0.048
0.1, 0.1, 0.1, 0.1, 0.1 0.008 0.581 0.022

30, 30, 30, 30, 30 0.5, 0.5, 0.5, 0.5, 0.5 0.054 0.151 0.047
0.5, 0.4, 0.3, 0.2, 0.1 0.040 0.190 0.046
0.5, 0.3, 0.1, 0.3, 0.5 0.046 0.178 0.048
0.3, 0.3, 0.3, 0.3, 0.3 0.028 0.156 0.047
0.1, 0.3, 0.5, 0.3, 0.1 0.033 0.221 0.049
0.1, 0.1, 0.1, 0.1, 0.1 0.006 0.330 0.026
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strata usually have power greater than that with equal

allele probabilities across strata.

Real example
Ghosh reported genotype frequencies of red cell glyoxalase

1 (GLO) polymorphism from several populations.16 We

consider the data, reproduced in Table 5, from four

populations in the Western Pacific Area. The gene frequen-

cies of four populations highly vary from 0.0455 in the

Eastern Carolines to 0.3611 in the Tokelau Islands, Samoa

and Fuji in between. The estimated disequilibrium coeffi-

cients (ie, D̂k) in the four populations are ranging from

0.0145–0.019, which are close to zero. This seems to

suggest that the homogeneity of HWE across the four

populations, although the gene frequencies vary appreci-

ably. Our proposed homogeneity score test yields

X2*¼2.33 with P-value being 0.51. Hence, it is now safe

to assume that the HWE is simultaneously valid across the

four populations. We apply the Olson and Foley’s test to

the same glyoxalase genotype data set in the Western

Pacific Area. Function of fixation coefficients (ie, (1�fK)
2)

was adopted and the corresponding homogeneity test

yields Thomog,a
2 ¼ 2.78 with P-value being 0.43. In this case,

both tests reach the same conclusion.

Discussion
In practice, one is tempted to test the Hardy–Weinberg law

across several independent populations without verifying

the underlying assumption of homogeneity of Hardy–

Weinberg disequilibrium across populations. Verification

of the latter assumption is critical in genotype data

analysis. Olson and Foley proposed a homogeneity test

for this purpose. Unfortunately, our simulations show that

their asymptotic version test is not reliable (ie, inflated type

I error rates) even in large sample size. Although an exact

version test was also proposed to overcome the liberty

issue, such a test is however always conservativeness and

computationally intensive for large sample sizes.

In this paper, we consider a homogeneity score test based

on disequilibrium coefficients. Empirical results from our

Table 2 Empirical type I error rates for X2* and Thomog,,a
2 under H0

0 when K¼3 and K¼5

n P X2* Thomog,,a
2

50, 50, 50 0.5, 0.5, 0.5 0.053 0.083
0.5, 0.4, 0.3 0.046 0.083
0.5, 0.3, 0.1 0.043 0.105
0.3, 0.3, 0.3 0.041 0.086
0.3, 0.2, 0.1 0.034 0.098
0.1, 0.1, 0.1 0.003 0.124

100, 100, 100 0.5, 0.5, 0.5 0.051 0.065
0.5, 0.4, 0.3 0.051 0.070
0.5, 0.3, 0.1 0.046 0.075
0.3, 0.3, 0.3 0.048 0.070
0.3, 0.2, 0.1 0.036 0.075
0.1, 0.1, 0.1 0.009 0.073

200, 200, 200 0.5, 0.5, 0.5 0.050 0.058
0.5, 0.4, 0.3 0.051 0.060
0.5, 0.3, 0.1 0.047 0.061
0.3, 0.3, 0.3 0.050 0.061
0.3, 0.2, 0.1 0.043 0.064
0.1, 0.1, 0.1 0.023 0.063

50, 100, 200 0.5, 0.5, 0.5 0.050 0.072
0.5, 0.4, 0.3 0.050 0.070
0.5, 0.3, 0.1 0.046 0.068
0.3, 0.3, 0.3 0.045 0.074
0.3, 0.2, 0.1 0.042 0.071
0.1, 0.1, 0.1 0.010 0.097

100, 100, 100, 100, 100 0.5, 0.5, 0.5, 0.5, 0.5 0.050 0.079
0.5, 0.4, 0.3, 0.2, 0.1 0.042 0.096
0.5, 0.3, 0.1, 0.3, 0.5 0.045 0.091
0.3, 0.3, 0.3, 0.3, 0.3 0.046 0.086
0.1, 0.3, 0.5, 0.3, 0.1 0.036 0.102
0.1, 0.1, 0.1, 0.1, 0.1 0.008 0.106

50, 75, 100, 125, 150 0.5, 0.5, 0.5, 0.5, 0.5 0.048 0.082
0.5, 0.4, 0.3, 0.2, 0.1 0.043 0.094
0.5, 0.3, 0.1, 0.3, 0.5 0.042 0.096
0.3, 0.3, 0.3, 0.3, 0.3 0.043 0.092
0.1, 0.3, 0.5, 0.3, 0.1 0.034 0.117
0.1, 0.1, 0.1, 0.1, 0.1 0.008 0.125
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simulation studies support that our homogeneity score test

is a reliable asymptotic testing procedure even for small

sample sizes. However, our test may suffer the drawback

that it may be quite conservative for rare allelic probabi-

lities (eg, p0.1). In this case, one may require larger sample

sizes to overcome the conservativeness issue. In this regard,

we also provide a sample size formula for design purpose.

We have implemented the test procedures described in this

manuscript in a Matlab program, which can be down-

loaded from the web site: http://math.nenu.edu.cn/jhguo/

program.htm.

We also applied the Kolmogorov–Smirnov test to

study the asymptotic behaviors of our test (ie, X2*). Briefly,

for allele frequency greater than or equal to 0.1, we

find that the asymptotic w2 sampling distribution

property follows for moderate sample sizes (eg, nkX50).

For rare allele frequency (ie, o0.1), larger sample sizes

are required. In fact, after some straightforward algebra,

we observe that HkD (D*, pk*) has larger variance for

rare pk. This may explain the severe conservativeness

of X2* for rare pk. We are now undertaking an investiga-

tion of possible modification of X2* for conservative

correction.

We note that exact (conditional) method works in Olson

and Foley12 as they considered fixation coefficient f’s

which in turn are odds ratio. In their case, sufficient

statistics for those nuisance parameters exist and can be

eliminated by conditioning on their sufficient statistics.

On the contrary, we consider the disequilibrium coefficient

D’s, which are actually rate differences. In our case,

sufficient statistics do not exist for the corresponding

nuisance parameters and the exact conditional method

hence is not applicable.17

Table 3 Empirical type I error rates for X2* under H0

n D p
Empirical

size

30, 30, 30 0.03 0.5, 0.5, 0.5 0.061
50, 50, 50 0.055
100, 100, 100 0.051
30, 30, 30 �0.03 0.5, 0.5, 0.5 0.048
50, 50, 50 0.049
100, 100, 100 0.050
30, 30, 30 0.03 0.5, 0.4, 0.3 0.045
50, 50, 50 0.048
100, 100, 100 0.049
30, 30, 30 �0.03 0.5, 0.4, 0.3 0.040
50, 50, 50 0.042
100, 100, 100 0.049
30, 30, 30, 30, 30 0.03 0.5, 0.5, 0.5, 0.5, 0.5 0.063
50, 50, 50, 50, 50 0.057
100, 100, 100, 100, 100 0.051
30, 30, 30, 30, 30 �0.03 0.5, 0.5, 0.5, 0.5, 0.5 0.049
50, 50, 50, 50, 50 0.050
100, 100, 100, 100, 100 0.050
30, 30, 30, 30, 30 0.03 0.5, 0.4, 0.3, 0.4, 0.5 0.047
50, 50, 50, 50, 50 0.049
100, 100, 100, 100, 100 0.049
30, 30, 30, 30, 30 �0.03 0.5, 0.4, 0.3, 0.4, 0.5 0.038
50, 50, 50, 50, 50 0.042
100, 100, 100, 100, 100 0.046

Table 4 Empirical power for X2*

n D p Power

30, 30, 30 �0.03, 0.0, 0.03 0.5, 0.5, 0.5 0.124
50, 50, 50 0.177
100, 100, 100 0.310
30, 30, 30 �0.03, 0.0, 0.03 0.5, 0.4, 0.3 0.133
50, 50, 50 0.196
100, 100, 100 0.363
30, 30, 30 �0.05, 0.0, 0.05 0.5, 0.5, 0.5 0.270
50, 50, 50 0.420
100, 100, 100 0.730
30, 30, 30 �0.05, 0.0, 0.05 0.5, 0.4, 0.3 0.297
50, 50, 50 0.473
100, 100, 100 0.790
30, 30, 30, 30, 30 �0.06, �0.03, 0.0, 0.03, 0.06 0.5, 0.5, 0.5, 0.5, 0.5 0.348
50, 50, 50, 50, 50 0.546
100, 100, 100, 100, 100 0.886
30, 30, 30, 30, 30 �0.06, �0.03, 0.0, 0.03, 0.06 0.5, 0.4, 0.3, 0.4, 0.5 0.353
50, 50, 50, 50, 50 0.560
100, 100, 100, 100, 100 0.887
30, 30, 30, 30, 30 �0.1, 0.05, 0.0, 0.05, 0.1 0.5, 0.5, 0.5, 0.5, 0.5 0.806
50, 50, 50, 50, 50 0.969
100, 100, 100, 100, 100 1.0
30, 30, 30, 30, 30 �0.1, 0.05, 0.0, 0.05, 0.1 0.5, 0.4, 0.3, 0.4, 0.5 0.811
50, 50, 50, 50, 50 0.972
100, 100, 100, 100, 100 1.0
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Finally, the theories developed in this paper can be

readily extended to genotype data with multiple alleles.
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Appendix A
Consistency and the condition to attain asymptotic
efficiency for D*

Let nk¼nbk, with bk40 and k¼1, 2,y,K. The asymptotic

property of D* is obtained under the assumption that K is

fixed and n approaches infinity (ie, sufficiently large).

Following the notation above, the Mantel–Haenszel-type

estimator of D* can be rewritten as

D� ¼
XK
k¼1

ðnk=x12kÞ2D̂k=
XK
k¼1

ðnk=x12kÞ2

By the Central Limit Theorem,
ffiffiffi
n

p
ðyk � gkÞ has an

asymptotic normal distribution, N(0,
P

k/bk). By delta

method, we obtain
ffiffiffi
n

p
ðD̂k �DkÞ has an asymptotic normal

distribution with mean 0 and variance wk(Dk,pk)/bk. As

Dk¼D under H0 for k¼1, 2,y,K, we can derive that D* is a

consistent estimate of D. Let wk¼wk(D,pk), vk¼1/(pkqk�D).

Hence, the asymptotic variance of D* under H0 is given by

AsyVarðD�Þ ¼

PK
k¼1

wku4k=bk

nð
PK
k¼1

u2kÞ
2

Denote the information matrix with respect to D and p

under H0 by

I ¼

PK
k¼1

IkDD I1Dp1 . . . IKDpK

I1Dp1 I1p1p1 . . . IKp1pK

..

. . .
. ..

.

IKDpK . . . . . . IKpKpK

0
BBBBB@

1
CCCCCA

By inverting I, we can obtain the asymptotic variance of

D̂, which is given by

AsyVarðD̂Þ ¼ 1

s

XK
k¼1

bk=wk

 !�1

By the Cauchy–Schwarz inequality

XK
k¼1

u2k

 !2

p
XK
k¼1

wku4k=bk

 ! XK
k¼1

bk=wk

 !

Thus, AsyVar(D̂)pAsyVar(D*) and we get the sufficient

and necessary condition for the asymptotic efficiency of

D*, that is, wkvk
2¼ c, k¼1, 2,y,K, where c is a constant

Table 5 Glyoxalase genotype data in Western Pacific Area

Population Genotype counts

nk 1–1 1–2 2–2 p̂k D̂k

Eastern Carolines 748 3 62 683 0.0455 0.0019
Tokelau Islands 961 118 458 385 0.3611 �0.0076
Samoa 101 4 39 58 0.2327 �0.0145
Fiji 137 4 38 95 0.1679 0.0010
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independent of all the parameters. The condition is

satisfied if D¼0. From the above discussion, we know that

D* is inefficient in general case.

Appendix B
Simple expression for IkD=Pk

For the kth stratum, we denote the information matrix

with respect to Dk and pk by

Ik ¼ Dk IkDkpk IkpkDk
Ikpkpk

� �

By the property of inverse matrix, IkD/pk(Dk,pk) is

equal to the reciprocal of the (1,1) element of Ik
�1.

On the one hand, according to the property of MLEs,

we have ffiffiffiffiffi
nk

p
ðD̂k �Dk; p̂k � pkÞ0 �!

D
Nð0; nkI

�1
k ðDk; pkÞÞ;

where D̂k¼ (4x11kx22k�x12k
2 )/(4nk

2) is the MLE of Dk. There-

fore, the asymptotic variance of
ffiffiffiffiffi
nk

p
D̂k is nk=IkDjpkðDk; pkÞ.

On the other hand, let yk¼ (x11k, x12k, x22k)/nk, by the

Central Limit Theorem,
ffiffiffiffiffi
nk

p ðyk � gkÞ has an asymptotic

normal distribution, N(0,
P

k), where gk¼ (p11k, p12k, p22k)
0,P

k¼ diag(gk)�gkg
0
k. Let ck ¼ qD̂k

qyk
jyk¼gk

. By delta method, we

obtain
ffiffiffiffiffi
nk

p ðD̂k �DkÞhas an asymptotic normal distribution

with mean 0 and variance c0k
P

kck. After simple calculation,

we have c0k
P

kck¼wk(Dk,pk). Hence, we can give the exact

expression IkDjpkðDk; pkÞ ¼ nk=wkðDk; pkÞ . Naturally, the ex-

pression of IkDjpkðD; pkÞ is just IkDjpkðDk; pkÞ by substituting D

for Dk.
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