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Covariate-based linkage analysis: application
of a propensity score as the single covariate
consistently improves power to detect linkage
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Successful identification of genetic risk loci for complex diseases has relied on the ability to minimize
disease and genetic heterogeneity to increase the power to detect linkage. One means to account for
disease heterogeneity is by incorporating covariate data. However, the inclusion of each covariate will
add one degree of freedom to the allele sharing based linkage test, which may in fact decrease power.
We explore the application of a propensity score, which is typically used in causal inference to combine
multiple covariates into a single variable, as a means of allowing for multiple covariates with the addition
of only one degree of freedom. In this study, binary trait data, simulated under various models involving
genetic and environmental effects, were analyzed using a nonparametric linkage statistic implemented in
LODPAL. Power and type I error rates were evaluated. Results suggest that the use of the propensity score
to combine multiple covariates as a single covariate consistently improves the power compared to an
analysis including no covariates, each covariate individually, or all covariates simultaneously. Type I error
rates were inflated for analyses with covariates and increased with increasing number of covariates, but
reduced to nominal rates with sample sizes of 1000 families. Therefore, we recommend using the
propensity score as a single covariate in the linkage analysis of a trait suspected to be influenced by
multiple covariates because of its potential to increase the power to detect linkage, while controlling for
the increase in the type I error.
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Introduction
A variety of nonparametric methods have been developed

that test for linkage of a disease gene to a marker locus

(or loci) by detecting significant increases in identical

by descent (IBD) allele sharing probabilities in pairs of

affected relatives. Incorporating covariate information

can improve their power, and several methods have

been proposed to allow for disease heterogeneity by

using covariate-dependent penetrances that define liability
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classes, or covariate-dependent allele sharing proportions

that define linked and unlinked subgroups.1–7

A unified approach for linkage detection that incorpo-

rates covariate data directly in a general conditional

logistic model has also been proposed.8,9 The likelihood

ratio test of linkage is based on the relative risk of disease

(lir) and the IBD allele sharing probabilities (fir) for a given

relative pair type (r) summed over all possible numbers

of alleles (i¼0, 1, or 2) shared IBD. The likelihood ratio for

a relative pair type, (LRr), compares the observed allele

sharing proportions (f̂ir) given the genotype marker data

with the probabilities (fir) expected under the hypothesis of

no linkage using

LRr ¼
X

i¼0;1;2

lir f̂ ir

, X
i¼0;1;2

lir f ir :

The model is extended with a parameterization of the

relative risk lir for a given relative pair sharing i (0, 1, or 2)

alleles IBD by a conditional logistic regression model

allowing for K covariates, where

lir ¼ exp ðbi þ
XK
j¼1

dijxjÞ;

bi is the logarithm of the disease relative risk of sharing

i alleles IBD with no covariate effects, and dij is the

contribution to the logarithm of the disease relative risk

per unit increase in covariate xj while simultaneously

controlling for all other covariates. The relative risks are

constrained10 so that only one additional parameter is

estimated for each included covariate. Directly incorporat-

ing covariates into the likelihood ratio test allows for

covariate-related locus heterogeneity and for the simulta-

neous estimation of both linkage and covariate effects. Its

limitation, however, is that each additional covariate adds

one degree of freedom to the linkage test. Consequently,

use of covariates needs to balance the increase in power by

accounting for heterogeneity with multiple covariates with

its reduction due to estimating more parameters.

Several genome-wide linkage analyses using this

approach have been successful in enhancing previously

identified linkage signals when compared to linkage

analyses without covariates.8,9,11 –15 Stepwise model build-

ing and principal component analyses can assess the

relative importance of covariates and guide their selection,

but they raise multiple testing concerns when many

subsets are analyzed.13 Unknown underlying covariate

effects on the disease trait make an a priori selection of

important covariates difficult. We propose to overcome

these problems related to including multiple covariates by

using a propensity score (PS), which collapses multiple

covariate data into a single scalar variable.

Rosenbaum and Rubin16 first described the PS in a causal

inference analysis as a means to control for multiple

covariate effects that could potentially bias assessments of

treatment effect on outcomes when randomization experi-

ments were not possible. In such a setting, the score is

defined as the conditional probability of being assigned to

a treatment (the causal event) given the covariate data, and

in practice, can be estimated from observed covariate data

with a logistic regression of treatment group assignment on

the covariates. The score can then be used for matching,

stratification, or regression adjustment to ensure that the

covariates are balanced between the two treatment groups

when outcomes between groups are compared. This is

feasible because the PS has the balancing property that for

groups of subjects with the same score, the treated and the

untreated subjects have the same joint distribution of all

the covariates that entered into its calculation.16–18

In the context of linkage analysis, the causal event of

interest, namely, the genotype at a locus responsible for

disease, is not directly observed because that locus is not

known a priori. For this reason, the standard definition of a

PS is not directly applicable, but it can be redefined to be

the conditional probability of being affected given the

covariates. Such a definition of a PS for predicting affection

was also proposed by Rich,19 but was not examined in

practice. Here we propose to use the PS as a covariate in

linkage analysis with an affected relative pair design.

After conditioning on the PS, the covariates no longer

predict disease status because the balancing property

ensures that the affected and unaffected individuals with

the same score have the same joint distribution of all the

covariates considered. Consequently, stratification with a

single PS will capture similar information to that of

multiple covariates without further increasing the degrees

of freedom. Secondly, the PS can be interpreted as the

predicted disease risk contributed by the covariates con-

sidered. Thus, disease mediated through pathways other

than the covariates, such as through a genetic locus will be

more easily detectable from subjects who both have low PS,

and are more homogenous. With affected relative pairs,

this means that a model that allows the excess IBD sharing

to associate with low pair-specific PS strata (such as with

pairs with the smallest sum) is expected to be more

powerful than a model that does not.

We tested the application of the PS through a series of

simulations of a genetic trait with underlying covariate

effects. In our analysis, we first estimated the PS using both

affected and unaffected individuals. Then we used the

estimated PS as the single covariate in Olson’s conditional

logistic regression model8 within the affected relative pair

design, and compared its performance in linkage analyses

incorporating no covariate, each covariate individually,

and all covariates simultaneously. We seek answers to two

questions: (1) does the inclusion of the PS as the single

covariate improve the power to detect linkage over the

inclusion of either covariate individually or of all the

covariates simultaneously; and (2) how does its type I error

rate compare?
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Materials and methods
Simulation

Using G.A.S.P. v3.33,20 a binary trait phenotype was

simulated based on an effective disease penetrance (EDP)

model for the underlying genetic trait locus and two

covariate effects (one binary and one quantitative).

Genotype data for linked (y¼0.01) and unlinked (y¼0.5)

markers, each with eight equally frequent alleles, were also

simulated. Two sets of genotype-specific baseline pene-

trance values defined dominant, codominant, and reces-

sive genetic inheritance models based on a disease allele

frequency (q) of 0.1% for a dominant or codominant

disease allele or of 2% for a recessive disease allele.

The effective disease penetrance (EDP) was defined as the

probability of affection (A) dependent on the baseline

penetrance given genotype G (11, 12, or 22) at the trait

locus and on the binary (B) and quantitative (Q) covariates

effects using the model:

EDP ¼ PðA G; B; QÞ ¼j
0 if 04sum

sum if 0osumo1
1 if sum41

8<
: ;

with sum¼ pB(G) þ CB(G)*B þ CQ(G)*Qwhere: pB(G) is the

baseline disease penetrance for genotype G; B is an

indicator of binary covariate exposure with probability

PB; Q is a quantitative covariate (drawn from a standard

normal distribution); and CB(G), CQ(G) are genotype

dependent coefficients of the contribution to the effective

disease penetrance for covariates B, Q, respectively.

A total of 200 nuclear families having four offspring (at least

two affected) were ascertained for each sample, and 10000

replicates were generated for each model. All trait, covariate,

and marker data were available for all individuals. Covariate

values were independent of genotypes and of each other.

Propensity score calculation

The PS values were derived from a logistic regression of

affection status using SAS v8.2. on the entire data set with

covariate data, fitting the following logit model:

logit Pr ðindividual i affected xijÞ
���h i

¼ aþ
X
j

bjxij;

with xij as the jth covariate for person i. Measured covariate

values from both affected and unaffected individuals were

required. An individual’s PS, the predicted probability of

being affected given the set of covariates, is then calculated

as the estimate of

PSi ¼ e
aþ
P
j

bjxij

,
1þ e

aþ
P
j

bjxij

 !
:

Linkage analysis

Covariate-based affected relative pair linkage analysis using

single point IBD probabilities and a general conditional

logistic model was performed as implemented in GENIBD

and LODPAL of S.A.G.E. v4.4.8,9,21 In LODPAL, all affected

relative pairs are treated as independent, and a single

covariate value was calculated for each affected relative pair

as the sum of the covariate values for the two affected

relatives in the pair. A sum was selected to allow for

different risks associated with concordant pairs at the high

versus low range of covariate values. LOD scores for the

linked and unlinked marker were calculated incorporating

no covariates, each covariate alone, both covariates, and

the PS as a combined covariate effect.

Power and type I error rate calculation

The likelihood ratio statistic (LRS) was computed as twice

the natural log of the likelihood with versus without using

marker data.8 P-values for each replicate were computed

assuming a null hypothesis LRS distribution of a mixture of

w2 distributions. For K covariates, this mixture was 50%

(w2K): 50% (wKþ1
2 ), and if K¼0, it was a 50:50 mixture of a

point mass at 0 and w1
2.8,9,11,12 Using the appropriate LRS

distribution, the proportion of P-values among 10000

replicates that was less than the specified nominal

significance value was computed. The power was calcu-

lated as this proportion using the linked marker results.

The type I error rate was calculated as this proportion using

the unlinked marker results.

Comparison of power across covariate-genetic models

A total of 60 different genetic two-covariate models were

simulated. The parameter values for the models are

presented in Tables 1a and 1b. Each model contains one

binary and one quantitative covariate, and is coupled with

three genetic inheritance models (recessive, dominant, and

codominant) under two possible penetrances. A baseline

model (model0) for covariate functions was selected, and

covariate effects were systematically varied (as described by

the model features in Table 1b).

Comparison of the type I error rates by number of
covariates included in the analysis for different null
hypotheses

To test whether including covariates increased the empiri-

cal type I error rate, the results for the unlinked genetic

Table 1a Genetic and parameters for two-covariate
simulation models

Genetic model pb(11) pb(12) pb(22) q

Penetrance I Recessive 0.0 0.0 0.7 0.020
Dominant 0.0 0.3 0.3 0.001
Codominant 0.0 0.1 0.3 0.001

Penetrance II Recessive 0.0 0.0 0.9 0.020
Dominant 0.0 0.5 0.5 0.001
Codominant 0.0 0.3 0.5 0.001

Three genetic models from two possible penetrances (I and II) were
simulated for each covariate model.
Abbreviations: pb(G), baseline disease penetrance for genotype G
(11,12, or 22).
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marker locus were compared among the 60 models based

on the null hypothesis of no linkage to a genetic locus,

but with covariate effects (H1). The type I error rates

for the 60 models were averaged separately for each

number of covariates included in the linkage analysis: 0,

1 (including the binary covariate, quantitative covariate,

and the PS), or 2.

Three additional null hypotheses testing for linkage

based on possible biological disease mechanisms were also

examined to assess type I error rates:

(H2) a trait with no genetic effect, but with covariate effects

(H3) no linkage to a genetic locus without covariate effects

(H4) a trait with no genetic effect and without covariate

effects.

Note that a trait having no genetic effect implies that

both the markers simulated at y¼0.01 and y¼0.5 should

truly be unlinked to the disease. For comparison, three of

the original models (model1_dom, model1_codom, and

model1_rec) were used to represent the H1 hypothesis.

Variations of these models were designed to address the

other null hypotheses. A trait with no genetic effect was

modeled by setting the baseline penetrances equal across

genotypes, using four different levels (0.05, 0.10, 0.20,

0.50), with disease allele frequency of 1 and 0.1% for a total

of eight models. The situation of no covariate effect was

modeled by setting the covariate coefficients, CB(G) and

CQ(G), to 0. The type I error rates were calculated for each

model from the analysis of the unlinked marker. The rates

were then averaged for each number of covariates included

in the linkage analysis (0, 1, or 2) over the models

appropriate for each null hypothesis.

Comparison of type I error rates and power with
increasing sample size

Twelve models were simulated with increasing samples

sizes, from 200 to 500 and 1000 nuclear families ascer-

tained per sample. The three genetic models for model4,

model5, model6, and quant0.3 were selected to represent

cases with low and moderate baseline power when no

covariates were analyzed.

Table 1b Genetic and covariate parameters for two-covariate simulation models

B Q

Genetic model Model features Covariate model PB CB(11) CB(12) CB(22) CQ(11) CQ(12) CQ(22)

Penetrance II Baseline model model0 0.1 0.1 0.1 0.1 0.01 0.01 0.01

Penetrance I Low CB(G), CQ(G) model10 0.1 0.03 0.03 0.03 0.03 0.03 0.03

Low penetrance model4 0.1 0.2 0.2 0.2 0.01 0.01 0.01
model5 0.1 0.1 0.1 0.1 0.1 0.1 0.1
model6 0.1 0.2 0.2 0.2 0.1 0.1 0.1

Penetrance II High penetrance model1 0.1 0.2 0.2 0.2 0.01 0.01 0.01
model2 0.1 0.1 0.1 0.1 0.1 0.1 0.1
model3 0.1 0.2 0.2 0.2 0.1 0.1 0.1

Vary binary exposure bin(0.3) 0.1 0.3 0.3 0.3 0.1 0.1 0.1
bin(0.5) 0.1 0.5 0.5 0.5 0.1 0.1 0.1
bin(0.7) 0.1 0.7 0.7 0.7 0.1 0.1 0.1
bin(0.9) 0.1 0.9 0.9 0.9 0.1 0.1 0.1

Increase PB model7 0.2 0.1 0.1 0.1 0.03 0.03 0.03

Vary quantitative exposure quant(0.03) 0.1 0.1 0.1 0.1 0.03 0.03 0.03
quant(0.05) 0.1 0.1 0.1 0.1 0.05 0.05 0.05
quant(0.07) 0.1 0.1 0.1 0.1 0.07 0.07 0.07
quant(0.2) 0.1 0.1 0.1 0.1 0.2 0.2 0.2
quant(0.3) 0.1 0.1 0.1 0.1 0.3 0.3 0.3
quant(0.4) 0.1 0.1 0.1 0.1 0.4 0.4 0.4
quant(0.5) 0.1 0.1 0.1 0.1 0.5 0.5 0.5

Interaction model8 0.1 0.00 0.25 0.50 0.03 0.03 0.03
model9 0.1 0.05 0.10 0.15 0.05 0.05 0.05

Three genetic models (from two possible penetrances) were simulated for each covariate model. A baseline covariate model was determined, and
varying covariate models were considered with the features listed. For example, the baseline model consisted of model0_recessive, model0_dominant,
model0_codominant, with the genetic parameters given by Penetrance II.
Abbreviations: B, binary covariate; Q, quantitative covariate; PB, probability of binary covariate exposure; CB(G),coefficient of genotype-dependent
exposure on penetrance for the binary covariate B; CQ(G), coefficient of genotype-dependent coefficient on penetrance for the quantitative covariate
Q; G, genotype (11, 12, or 22).
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Results
Comparison of power among covariate-genetic
models

The effect on power of including covariates relative to the

analysis with no covariates was consistent across the

genetic models and across the nominal significance levels.

For a comparison of the covariate-genetic models accord-

ing to their features, the power at a nominal significance

threshold for a representative set according to the covariate

analyzed is presented in Table 2. The results suggest that,

compared to analyzing no covariates, including any single

binary or quantitative covariate may increase or decrease

the power to detect linkage, while including a PS

consistently increased power more than including either

and usually better than including both covariates. Scenar-

ios where the genetic effect was stronger (higher pene-

trances) or the covariate effect was reduced (lower exposure

due to lower PB, or smaller coefficients, CB(G), CQ(G), even

with low penetrance) lead to higher power. For the limited

models where the covariate effect was genotype dependent

(interaction), the power with the PS was the highest in

three of the six models, and was always higher than

analyzing no covariates.

In a comparison of all models according to the covariate

analyzed, 68% (41) of the 60 non-interaction models

resulted in the PS having the highest power, or matching

the highest power 70.02. Of that 68%, 35 models resulted

in the PS having the highest power, and six models resulted

in the PS matching the power of the best method 70.02

(no covariate, the binary or quantitative covariate indivi-

dually, or all covariates). Of the remaining 33% (19

models), the power was o0.1 for all of the methods.

Consequently, when the maximum power for any of the

methods was at least 0.10, including the PS as the single

covariate always resulted in the highest power or matched

the highest power 70.02. Additionally, the estimated

covariate effect parameter, d, from the conditional logistic

regression model, was negative for the PS analysis and for

the covariates that increased the power when included in

the analysis (results not shown).

Comparison of the type I error rates by number of
covariates included in the analysis

The averaged type I error rates for the 60 non-interaction

models are presented in Figure 1. One-covariate analyses

included binary covariate only, quantitative covariate only,

and PS. Increasing the number of covariates analyzed

increases the type I error rate by approximately 20% (from

0.051 for no covariates, to 0.059 for one covariate, and to

0.071 for two covariates at a nominal significance level of

0.05). The difference between the nominal and observed

rates is greatest at the lower significance levels. As a result,

not only is the power often lower when all covariates are

included in the analysis as compared to when the PS is

used, but an additional penalty results from the inflated

type I error rate with both covariates. The type I error rates

consistently increased as the included number of covari-

ates was increased, regardless of the null hypothesis

assumed (results not shown).

Comparison of type I error rates and power with
increasing sample size

The averaged type I error rates for each type of covariate

analyzed under the null hypothesis of no linkage with

covariate effects (H1) are presented in Figure 2. The

increase in the empirical type I error rates with increasing

number of covariates becomes smaller with increasing

sample size, suggesting an asymptotically correct null

hypothesis LRS distribution, but using this distribution

for small sample sizes (below 1000 families) may not be

appropriate.

With increasing sample size, the power for these models

also increased as expected. The PS resulted in either the

highest or matched the highest power 70.01 when the

baseline power increased above 0.09. As the relative

performance of the PS improved with each increase in

sample size, the pattern of the power results (which

covariate inclusion(s) corresponded to the highest power)

also changed with increasing sample size. The power

results for one illustrative model for the three sample sizes

are presented in Figure 3. This pattern change was not

observed when the baseline power dropped to o0.10 using

stricter nominal significance levels (results not shown). Of

the twelve models considered, only the quant0.3 models

never reached a power of greater than 0.09 at any sample

size.

Discussion
These extensive simulations compared the number and

type of covariates analyzed in a linkage test of a binary trait

with covariate effects. Results suggest that including

covariates directly in a conditional logistic model can

often increase the power to detect linkage compared to

including no covariates. Using a PS estimated from multi-

ple covariates can outperform an analysis with multiple

covariates, with no covariates, and at the very least will not

reduce power even if a covariate which reduces power

when analyzed individually is included in its calculation.

This power gain for including the PS is most dramatic

when there is moderate power to detect linkage (between

20 and 60%) without covariates. When the baseline power

is low (ie o0.10) including the PS does not necessarily

provide the greatest power. With virtually no power to

detect a genetic effect, the pattern of power results is

similar to that of type I error, suggesting that the

performance of the analytical methods is predominately

determined by the type I error behavior. When the sample

size increased so that there is some power to detect a

genetic effect, the superior performance of the PS over the

Propensity score consistently improves power
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Table 2 Trends in power comparing the various covariate-genetic models

Nominal Power for the covariate(S) analyzed PS

Comparisons Model Threshold None Binary Quant PS Both highest Trends

Genetic models Codom model0 0.000049 0.128 0.375 0.105 0.421 0.353 x Power of rec/domb

codomDom model0 0.877 0.978 0.846 0.983 0.970 x
Rec model0 0.947 0.999 0.943 0.999 0.994 x

Penetrances: I (L) model4_rec 0.05 0.470 0.842 0.376 0.853 0.815 x Higher penetrance,
higher powerI (lower) vs II (higher) II (H) model1_rec 0.762 0.980 0.668 0.982 0.972 x

I (L) model5_dom 0.083 0.079 0.089 0.087 0.094 x
II (H) model2_dom 0.198 0.151 0.255 0.265 0.237
I (L) model6_dom 0.070 0.068 0.079 0.073 0.082
II (H) model3_dom 0.142 0.127 0.152 0.175 0.164 x

Penetrance I (low) C¼0.1 model5_codom 0.05 0.084 0.080 0.090 0.089 0.099 Lower C, higher power
[CB(G)¼CQ(G)¼C] C¼0.03 model10_codom 0.155 0.140 0.251 0.256 0.234 x

Vary binary exposure C¼0.1 model0_dom 0.05 1.000 1.000 0.998 1.000 0.996 x Lower C, higher power
coefficient [CB(G)¼C] C¼0.3 bin(0.3)_dom 0.453 0.811 0.352 0.817 0.765 x

C¼0.5 bin(0.5)_dom 0.165 0.407 0.128 0.413 0.362 x
C¼0.7 bin(0.7)_dom 0.098 0.223 0.089 0.222 0.203 x
C¼0.9 bin(0.9)_dom 0.075 0.148 0.071 0.151 0.138 x

Vary quantitative exposure C¼0.01 model0_rec 0.05 1.000 1.000 0.999 1.000 0.996 x Lower C, higher power
coefficient [CQ(G)¼C] C¼0.03 quant(0.03)_rec 0.890 0.938 0.927 0.983 0.973 x

C¼0.05 quant(0.05)_rec 0.545 0.532 0.693 0.761 0.731 x
C¼0.07 quant(0.07)_rec 0.325 0.278 0.462 0.488 0.454 x
C¼0.1 model2_rec 0.172 0.138 0.238 0.238 0.221 x
C¼0.2 quant(0.2)_rec 0.075 0.075 0.085 0.081 0.091
C¼0.3 quant(0.3)_rec 0.057 0.062 0.063 0.064 0.072
C¼0.4 quant(0.4)_rec 0.055 0.065 0.062 0.058 0.074
C¼0.5 quant(0.5)_rec 0.048 0.062 0.061 0.058 0.071

Increase PB PB¼0.1 quant(0.03)_rec 0.05 0.890 0.938 0.927 0.983 0.973 x Lower PB, higher power
PB¼0.2 model7_rec 0.501 0.632 0.493 0.701 0.674 x

Interaction (binary covariate) Without model10_codom 0.05 0.155 0.140 0.251 0.256 0.234 x Power with PS higher
than with noneWith model8_codom 0.290 0.219 0.388 0.389 0.351 x

With model8_dom 0.435 0.361 0.593 0.589 0.566
With model8_rec 0.059 0.065 0.063 0.063 0.072

Interaction (binary covariate) Without quant(0.05)_dom 0.05 0.625 0.596 0.717 0.792 0.739 x Power with PS higher
than with noneWith model9_codom 0.275 0.220 0.380 0.381 0.350 x

With model9_dom 0.446 0.370 0.595 0.606 0.571 x
With model9_rec 0.059 0.063 0.066 0.063 0.073
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inclusion of the covariates individually or simultaneously

is then observed.

Maximum power was seen with the lowest covariate

effect (smallest covariate coefficient in the ‘bin’ and ‘quant’

covariate model comparisons, and lower probability of

exposure, PB), which seems counter-intuitive. However,

with strong covariate effects, disease will be primarily

determined by the covariate rather than the genetic effect.

The power to detect the genetic effect will decrease, as the

ascertained disease population will be heterogeneous with

subsets of disease caused by genetic and by nongenetic

factors, and the limits of linkage analysis hinge on its

ability to detect genetic effects among these various factors.

Power was also reflected in part by the estimated

covariate parameter, d. Using a sum as a pair-specific

covariate, situations when the d parameter was more

negative for the PS covariate had more power. A negative

d suggests that for each unit decrease in the PS sum (‘x’) for

the pair, there was a subsequent increase in the genetic risk,

l¼ ebþ dx. This can be expected because affected individuals

with low sums of PS are more likely to both have low PS,

and so more likely to both have a genetic cause for disease

other than through the covariates considered.

An interesting and important finding was the inflation

of the type I error rate with increasing number of covariates

analyzed. This suggests that for small samples the null

hypothesis distribution for the likelihood ratio statistic

including K40 covariates is not accurately approximated

by a 50:50 mixture of (wK
2) and (wKþ1

2 ) distributions.

Moreover, the larger type I error rate for including both

covariates implies that the real power gain for the PS may

be larger than the one presently observed. Increasing the

sample size reduced this inflation, suggesting that

although the distribution of the likelihood ratio statistic

may be asymptotically correct, it does not approach its

asymptotic distribution with a sample size of 200 families.

Consequently, permutation tests or a correction factor is

needed to address this issue when the sample size is less

than approximately 1000 families.

These simulation results have demonstrated that the use

of the PS as a covariate in linkage analysis is promising.

However, the strength of the conclusions is limited to the

assumptions made regarding the nature of the modeled

traits and covariate effects. One major limitation is the

simulation of fully observed covariate effects that are

independent of each other and familial relationships, and

of limited models with gene by covariate interaction.

Covariates, such as smoking history/exposure, may have

familial correlations or cohort effects, and may be geno-

type dependent. Thus the true impact of using a PS to

increase power may not be as great as these simulations

have shown when such correlations and interactions are

present. However, because the method of analysis is

conditional on families and on covariates, the above

correlations do not in principle affect the validity of using

a PS. The presence of interactions also adds an additional

layer of complexity by limiting the ability to distinguish

disease caused by genetic effects and by covariate effects. As

such interactions are often not known a priori, and

Figure 1 Observed type I error rates for linkage analysis averaged
over all models incorporating 0, 1, or 2 covariates (total of 60 models).

Figure 2 Observed type I error rates (averaged over 12 models) for
the 0.05 nominal significance level according to sample size.

Figure 3 Power at the nominal significance level of 0.05 for
model6_rec by the number of families ascertained.
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including a PS resulted in increased power over including

no covariates in the limited models tested, using a PS to

increase power will still be valuable although the consis-

tency of its relative performance will need further inves-

tigation. Also, because the PS is estimated from fully

observed covariates, it is not yet known how missing

covariate data in calculating the PS will affect the power of

the linkage results or will bias the linkage results. Missing

covariate data will impact all analysis methods, and

methods that can efficiently estimate the PS with missing

covariate data22 will be valuable in this context.

The second limitation is the requirement of covariate

data from both affected and unaffected individuals for

calculating the PS. Although covariate data from unaf-

fected individuals are not used in the linkage test, the PS

provides valuable information in a linkage analysis, and

thus the importance of collecting data on both affected

and unaffected individuals needs to be emphasized. The

proper ratio of unaffected to affected individuals required

to provide a valid estimate of a PS is unclear, but it can be

expected that similar to case–control analyses at least one

unaffected individual per family is needed. However, many

linkage studies of complex traits limit analyses to affected

relative pairs, so extensive covariate data may not exist on

unaffected individuals and the definition of the PS

considered here is not applicable. Moreover, the PS cannot

incorporate covariates that are specific to the disease, such

as those related to disease severity, which can often be

used as classification phenotypes to reduce heterogeneity.

If disease is composed of subphenotypes, it may still be

possible to analyze only affected data by considering

disease specific covariates in calculating a PS for a given

subphenotype. Re-classification of affection status can be

repeated for the other subtype(s) to identify subtype-

specific loci. This approach can also be used to allow for

multiple linked loci and potential gene-gene interactions,

especially when a linked locus or a gene has been identified

and can be used as a covariate. The usefulness of the PS

with such covariates still needs to be tested.

The third limitation results because the PS is an

estimated variable calculated from a regression on multiple

covariates, which is then used to represent a covariate

value in the calculation in the likelihood. The degrees of

freedom for including a single estimated PS covariate may

not be truly one. However, theoretical studies on the

application of the PS suggest that paradoxically the use of

an estimated value of the PS can provide a more precise

balance between the affected and unaffected than the use

of the theoretical true value of a PS.23,24 This, in turn,

suggests that treating the value of the PS as a real covariate

as opposed to an estimate may produce a more conserva-

tive variance for the likelihood ratio statistic.

The fourth limitation is our focus on using the sum as

the pair-specific covariate in Olson’s conditional logistic

regression model,8 which raises two issues. First, the sum is

just one function to express the combined risk from the

covariates at which a pair is exposed. Other functions need

to be considered with the criterion that they preserve the

homogeneity between the two members of the pair within

each of the function’s levels. For example, using the

absolute difference as a function does not allow for risk

differences between pairs with both low or high covariate

values, which may be important for a covariate like

smoking where concordant smokers may have a different

genetic risk than concordant nonsmokers, and where

covariate effect is independent of genotype. However, with

gene by covariate interactions and scenarios where it may

be important to distinguish only between concordant and

discordant pairs, the use of a difference can be more

powerful. Thus, deciding upon an appropriate function for

analysis should be highly dictated by the underlying

disease model. Second, including a covariate in this

conditional logistic model adds two parameters in an

unconstrained model, and one parameter in a constrained

model. Although the constraint of the one-parameter

model may not necessarily be correct under alternative

hypotheses, it is correct if there is no linkage conditional

on the covariate and so the constraint does not, by itself,

invalidate tests for the null hypothesis. However, other

possible misspecifications of the model with covariates

may result in an increase in the type I error when

deviations from the true model are severe. This is a

limitation for any model using covariates, as with other

parametric models, and is not in principle a limitation of

using the PS as a covariate.

The fifth limitation is the simulation of a single locus

trait model and use of single point analyses. Although this

model may be sufficient to detect linkage for Mendelian

diseases, complex diseases will likely consist of multiple

loci and will require more powerful multipoint linkage

analysis methods. It is possible to simulate more compli-

cated genetic trait models, however, interpretation of

results will be dependent on the assumptions of the

simulation design, which may not be realistic. Conse-

quently, using simplistic simulation models allows for a

more transparent comparison of methodology varying

only the number and types of covariates included in the

analysis. Additionally, including multiple covariates using

the conditional logistic model for multipoint linkage

analysis has been shown to increase power to detect

linkage in complex diseases, such as for prostrate cancer

and Alzheimer’s disease.11,12 Thus, using a PS covariate can

also be expected to help when it is also applied to the

analysis of real complex diseases.

In summary, with the true nature and number of

covariates affecting a genetic trait unknown, using a PS

to incorporate multiple covariates into the linkage test is

appealing with its increased power over incorporating no

or individual covariates, and as a single covariate is subject

to lower inflated type I error rates in small sample sizes.
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However, this is its first application to covariate-based

linkage analysis, and more extensive investigation, espe-

cially for the interaction models, is needed. Future plans

include studies that will: (1) examine the effect of the PS in

models with more than two covariate effects, with gene by

covariate interactions, and with varying functions of the

covariate pair values (such as with differences, and both

sums and differences), (2) determine a correction factor or

permutation test to calibrate the power for the inflated

type I error when samples sizes are less than 1000 families,

(3) further our understanding of the theoretical properties

of the PS when applied in the linkage analysis framework,

and (4) apply the PS to analyses of real linkage data sets

with covariate data available only for affected individuals

(though consisting of disease subtypes) and available for

both affected and unaffected individuals.
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