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Variance components model with disequilibria
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The variance components (VC) model has been popular for genetic analysis. It has received wide
applications in a variety of genetic practices, and been extended to various forms for different settings.
However, most of the existing VC models are, explicitly or implicitly, under the assumption of the Hardy–
Weinberg and/or linkage equilibria, which is impractical in some realistic settings since more or less
deviations from this assumption are common. We propose a new VC model that incorporates both these
disequilibria, and includes the existing models as special cases. The corresponding variance components
are computed for some commonly used relative pairs conditional on the observed marker identity-by-
descent data. Parameters can be estimated by the traditional methods such as the maximum likelihood
estimate. Simulation studies suggest that this extended model improves inference significantly over the
existing models when deviations of these disequilibria are present.
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Introduction
The variance components(VC) models1–8 has received

much attention and wide applications in quantitative

genetic trait studies, as this method requires few model

assumptions. It has been extended to various forms for

different data structures under different algorithms and

model assumptions. Lange and Boehnke9 extended it to

multivariate traits, Duggirala et al10 applied it to dichoto-

mous traits, Amos et al11 studied the least squares

algorithm of it. Andrade et al12 extended it to longitudinal

pedigree data. This model and its variants have been used

extensively in genetic linkage analysis. However, most of

the existing VC models are, explicitly or implicitly, under

the assumption of the Hardy–Weinberg and/ or linkage

equilibria. These fundamental assumptions are sometimes

not easy to justify, and in practice they are often more or

less deviated. In linkage analysis the latter assumption may

be inappropriate, since putative disease locus are usually in

linkage disequilibrium(LD) with the flanking marker loci.13

Almasy et al14 proposed a combined linkage/disequilibrium

analysis in which the LD are incorporated into the VC

model. There are some VC models for combined linkage

and association studies,15 a VC model incorporated with

the two disequilibria is of practical meaning, and has not

been in the literature. Here we consider such model in the

settings of Hardy–Weinberg and/or LD, as an extension of

the existing VC models. In our model the LD is para-

meterized via the trait-marker composite genotype, differ-

ently from that in Almasy et al14 in which the LD is

parameterized via the trait-marker alleles. The correspon-

dindg variance components are computed for some

commonly used relative pairs conditional on the observed

marker identity-by-descent (IBD) data. Parameters can be

estimated by the traditional methods such as the maximum

likelihood estimate (MLE) under the normal model assump-

tion. This extended VC model is expected to have more

accurate estimation of parameters, can be used for linkage

and combined linkage and LD mapping (association study),

using pedigree data, and have more power for such analysis.
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The common VC model
We first describe the likelihood of the commonly used

variance components model, for example as in Amos.5

Since the total likelihood is a product of likelihood over all

the families under study, we only present the model for a

given family for the sake of simplicity.

Let Yi be the trait value of the ith individual in the

family.The VC model describing the trait value is

Yi ¼ mþ gi þ Gi þ
XJ
j¼1

Zjxij þ ei; ð1Þ

where m is the overall mean, gi is the unobserved random

major gene effect at the trait locus with alleles denoted by

A and B, Gi is the unobserved polygenic effects,

gi ¼
a; if individual ihas genetypeAA
d; if individual ihas genetypeAB
�a; if individual ihas genetypeBB

8<
: ;

where the Zj’s are effects associated with the covariates xij’s,

and ei is the residual random error. The usual assumption

is that gi, Gi and ei are uncorrelated and E(gi)¼E(Gi)¼
E(ei)¼ 0. Let p be the population proportion of allele A.

Under the Hardy–Weinberg assumption one has

E(gi)¼ a(2p�1)þ2p(1�p)d¼0. The covariance between

individuals i and j is

CovðYi;YjÞ ¼
s2a þ s2d þ s2G þ s2e ; if i ¼ j
2Fijs2a þ D7ijs2d þ 2Fijs2G; if i 6¼ j

;

�
ð2Þ

where sa
2¼2p(1�p)[a�d(2p�1)]2 is the additive genetic

variance due to the locus, s2d¼4p2(1�p)2d2 is the dominant

genetic variance, Fij¼D7ij/2þD8ij/4 is the kinship coeffi-

cient16 between individuals i and j, and D7ij, D8ij, D9ij are

the condensed kinship coefficient,17 between individuals

i and j. The Dkijs(k¼1,y, 9) are the probabilities for

the nine possible condensed IBD status as divided by

Jacquard,17 in which D7ij, D8ij and D9ij are commonly used

in practice. They are the population probabilities of sharing

2, 1 and 0 genes IBD for individuals (i, j), without regard to

their particular genotypes, but only (i, j)’s kinship relation-

ships, and under the Mendelian inheritance. Also, 2Fij is

the expected proportion of gene IBD for individuals (i, j), at

this locus.

For linkage analysis, usually IBD sharing data {pij}
{pij¼0, 1, 2} between a relative pair individual i and j, at

marker locus is available, Amos5 proposed the following

model for the conditional covariance

CovðYi;YjjpijÞ

¼
s2a þ s2d þ s2G þ s2e ; if i ¼ j

f ðy; pijÞs2a þ gðy; pijÞs2a þ 2Fijs2G; if i 6¼ j
;

(
ð3Þ

where y is the recombination fraction between the trait and

the marker loci. The values of f(y,pij) and g(y, pij) can be

found.5 It is noted that g(y, pij)¼0 for most human relative

pairs except full sibs and it’s related to the possibility of

sharing two allales IBD.

VC model with disequilibria
In this section we derive VC models with disequilibria in

different settings, by incorporating these parameters into

the covariances (2).

Hardy–Weinberg disequilibrium at trait locus

We first consider incorporating the Hardy–Weinberg

disequilibrium at the trait locus into the VC model,

without marker information Let Ak denote allele k at the

trait locus (k¼ 1,y,K), pk its proportion in the population,

Pkl the corresponding proportion of the genotype AkAl. One

way to deal with the deviation from the Hardy–Weinberg

assumption is the use of the within population inbreeding

cofficient18,19 f at the trait locus, which is the odds that at

any gene, both alleles of the gene pair were inherited from

the same ancestor. Let I( � ) be the indicator function. Given

f we have

pkl :¼ pðAkAlÞ ¼ ð1� f Þpkpl þ fpkIðl ¼ kÞ: ð4Þ
Here 0rfr1, and f¼0 corresponds to Hardy–Weinberg

equilibrium. Let p(kl)(km) be the conditional probability that

two individuals have genotype (AkAl,AkAm) or (AlAk,AmAk)

at the trait locus given that they share Ak IBD (Assuming

random mating and phase known, these are the only cases

they share Ak IBD. The possibilities for the cases AkAl, AmAk

or (AlAk,AkAm) are negligible). Let Y be the trait value of a

general individual and g be his/her genotype, and

mkl¼E(Y|g¼AkAl). Following Fisher1 and Lange,16 let ak’s
be the optimal additive genetic effects in the sense that

they minimize the sum of squared residuals SkSld
2
klpkl,

where dkl¼ mkl�ak�al. We show in Appendix A that

pðklÞðkmÞ ¼
pklpkm
pk

¼pk ð1� f Þpl þ fIðl ¼ kÞ½ 

ð1� f Þpm þ fIðm ¼ kÞ½ 
;

ð5Þ

and

CovðYi;Yj fj Þ

¼
ð1þ ðf =2ÞÞs2a þ ð1� f Þs2d þ f s20 þ s2G þ s2e ; if i ¼ j

D7ijg7ðf Þ þ D8ijg8ðf Þ þ 2Fijs2G; if i 6¼ j

(
;

ð6Þ

where g7(f)¼ (1þ (f/2))s2aþ (1�f)s2dþ fs20, g8(f)¼ ((1þ f)2/

2)s2a, s2a¼ 2Ska
2
kpk, s2d¼SkSld

2
klpkpl, s20¼Skd

2
kkpk is the part

of variance explained by the optimal additive genetic

effects, and ak¼Slmklpkl/[(1þ f)pk] for all k.

Note that if f¼0, (6) reduces to (2). The ak’s and is dkl’s are
the optimal additive major gene effects and the residual

effects.16

Linkage to marker

Now we consider the case with marker information

available in addition to the trait locus data. Let pij(¼0, 1, 2)

to be the number of IBD allele sharing between individuals

i and j at the marker locus, p0ij be the corresponding
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unobserved number at the trait locus, and y be the

recombination fraction between the two loci. Expressions

for Cov(Yi,Yj|pij¼ k) can be found by the formula

Cov Yi;Yj=pij ¼ k
� �

¼
X2
l¼0

Cov Yi;Yjjp
0

ij ¼ l
	 


P p
0

ij ¼ ljpij ¼ k
	 


:

Usually, for each individual the IBD data pij is not directly
available. However, their probabilities P(pij¼ k)(k¼0, 1, 2)

can be computed from the corresponding observed marker

genotypes. So the covariances between individual pair (i, j)

in a given family is

Cov Yi;Yj

� �
¼
X2
k¼0

Cov Yi;Yjjpij ¼ k
� �

P pij ¼ k
� �

: ð7Þ

Covariance with Hardy–Weinberg disequilibrium at
trait given marker IBD

In the previous section, we derived the variance compo-

nents under Hardy–Weinberg equilibrium at the trait

locus. Here we give these componenets with the linked

marker information, that is, conditional on the trait-

marker IBD data. In this case the variance components are

Cov Yi;Yj fj ; pij
� �

¼ D7ijðpijÞCov Yi;Yj fj ; p
0

ij ¼ 2
	 


þ D8ijðpijÞCov Yi;Yj fj ; p
0

ij ¼ 1
	 


¼
1þ f

2

	 

s2a þ ð1� f Þs2d þ f s20 þ s2G þ s2e ; if i ¼ j

D7ijðpijÞg7ðf Þ þ D8ijðpijÞg8ðf Þ þ 2Fijs2G; if i 6¼ j

8<
: ;

ð8Þ

where D7ij(pij)¼P(p0ij¼2|pij), D8ij(pij)¼P(p0ij¼1|pij) and

D9ij(pij)¼P(p0ij¼0|pij) are the conditional IBD sharing at

the trait locus given the IBD sharing at the marker locus,

for individuals (i, j). The derivation is the same as that for

Cov(Yi,Yj|f) with D7ij and D8ij replaced by D7ij(pij) and

D8ij(pij), whose values are obtained from the relationships

D7ijðpijÞ ¼ Pðp 0

ij ¼ 2; pijÞ=pðpijÞ;
D8ijðpijÞ ¼ Pðp 0

ij ¼ 1; pijÞ=pðpijÞ;
D9ijðpijÞ ¼ Pðp 0

ij ¼ 0; pijÞ=pðpijÞ

and the known values of P(p0ij¼0, pij) as listed in the

literatures cited before. Note here given p0ij¼0, Yj and Yj

are independent, and Cov(Yi,Yj|f,p0ij¼0)¼0, thus we don’t

have the term for D9ij(pij).
Since in real data the set {pij} is unobservable, we only

have the computed the set of probabilities {P(pij¼ k)}, thus

the covariance is

Cov Yi;Yj fj
� �

¼
X2
k¼0

Cov Yi;Yj fj ; pij ¼ k
� �

P pij ¼ k
� �

: ð9Þ

Covariance with LD between trait and marker

In linkage analysis, LD between the trait locus and

the genotype marker locus should be taken into

consideration. In this section we compute the

covariances between relative pairs when in addition to

the case of LD is also present between the trait and

marker loci. Let ak and akal denote the alleles and

genotypes at the marker locus, qk and qkl be the corre-

sponding population frequencies. Since the within-

population inbreeding coefficient f is common for

any locus in the genome of the given population,

f describes the relationship between the marker genotype

frequencies qks allele frequencies qkls, in the same way

as it did between the pks and pkls at the trait locus. That is,

we have

qkl ¼ ð1� f Þqkql þ fqkIðl ¼ kÞ: ð10Þ

Let G ¼ AkAl

aras

	 

be a general notation for the trait-marker

composite genotype. We assume

pðkl;rsÞ ¼ pklðqrs � zprsÞ þ zpklIððr; sÞ ¼ ðk; lÞÞ: ð11Þ

It is easy to check that under (11), SkSlp(kl, rs)¼ prs and

SrSsp(kl, rs)¼ pkl,, the probabilities of composite genotypes

satisfy such consistent condition with its marginal prob-

abilities. Here 0pzp1 is the LD parameter, and it should

not be confused with the definition of LD that is used in

some texts, such as in Weir20 or Almasy et al.14 Note that

z¼0 corresponds to linkage equilibrium. Also, z manifests

the vertical connection between the trait and marker loci,

while the recombination fraction describes the horizontal

link between the alleles.

For a relative pair, let p(kl)(mn)|p0ij¼P(AkAl,AmAn|p0ij) be

the conditional probability that individual i has trait

genotype AkAl and individual j has trait genotype AmAn

given their IBD value p0ij at this locus, pklm|p0ij¼
½P(AkAl,AkAm|p0ij)þ&frac12;P(AkAl,AmAk|p0ij) be the prob-

ability when they also share one allele identical by state

(IBS) at the trait; pkl|p0ij¼P(AkAl,AkAl|p0ij) be the probability

when they share both alleles IBS at the trait locus. We have

(Appendix B)

CovðYi;Yjjf ; z; pijÞ

¼
ð1þ f =2Þs2a þ ð1� f Þs2d þ f s20 þ s2G þ s2e ; if i ¼ jP9

k¼7 DkijðpijÞgkðf ; z; pijÞ þ 2Fijs2G; if i 6¼ j

(
;

ð12Þ

where g7(f, z, pij), g8(f, z,pij) and g9(f, z, pij) denote respec-

tively Cov(gi, gj|f, z,pij,p0ij¼2), Cov(gi, gj|f, z,pij, p0ij¼1) and

Cov(gi, gj|f, z, pij,p0ij¼0). Note that by conditioning on the

IDB values at both the trait and marker loci, we cannot

assert Cov(gi, gj|f, z,pij, p0ij¼0)¼ 0 as we did for the previous

section. We have g7(f, z,pi,j)�g7(f ),

g8ðf ; z; pijÞ

¼
g8ðf Þ; pij ¼ 0

g8ðf Þ; pij ¼ 1

ð1� zÞg8ðf Þ � zð1þ f Þ2s1;1 þ 2zs1;2 þ z2s1;3; pij ¼ 2

8><
>: ;
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and

g9ðf ; z; pijÞ ¼
0; pij ¼ 0

z2ð1þ f Þ2s22; pij ¼ 1

z2s23; pij ¼ 2

8<
: ;

where

s1;1 ¼
X
k

a2kpk
X
s

ðqks � zpksÞ ð1� f Þps þ fIðs ¼ kÞ½ 

qks � zpks þ zð1� f Þps þ zfIðs ¼ kÞ ;

s1;2 ¼
X
k

X
l

X
m

ðak þ al þ dklÞðak þ am þ dkmÞ


pðklÞðkmÞðqkm � zpkmÞ

qkm � zpkm þ zð1� f Þpm þ f zIðk ¼ mÞ ;

s1;3 ¼
X
k

X
l

ðak þ al þ dklÞ2

 p2kl
pk½qkl � zpkl þ zð1� f Þpl þ f z
 ;

s22 ¼
X

k
a2kp

2
k=qk; s

2
3 ¼

X
k

X
l
ðak þ al þ dklÞ2p2kl

which is also written as

2ð1� f Þ2
X
k

X
l

a2kp
2
kp

2
l þ 8f ð1� f Þ

X
k

a2kp
3
k

þ 4f 2
X
k

a2kp
2
k þ ð1� f Þ2

X
k

X
l

a2klp
2
kp

2
l

2f ð1� f Þ
X
k

d2kkp
3
k þ f 2

X
k

d2kkp
2
k þ 4ð1� f Þ2

X
k

X
l

akdklp2kp
2
l

þ 8f ð1� f Þ
X
k

akdkkp3k þ 4f 2
X
k

akdkkp2k

þ 2ð1� f Þ2ð
X
k

akp2kÞ
2 :¼ 2ð1� f Þ2s3;1 þ 8f ð1� f Þs3;2

þ 4f 2s3;3 þ ð1� f Þ2s3;4 þ 2f ð1� f Þs3;5 þ f 2s3;6

þ 4ð1� f Þ2s3;7 þ 8f ð1� f Þs3;8 þ 4f 2s3;9 þ 2ð1� f Þ2s3;10:

Since the genetic covariance between the relative pair can

be written as

Covðgi; gjjf ; z; pijÞ ¼
X
p 0
ij

Pðp0
ijjpijÞCovðgi; gjjf ; z; pij; p0

ijÞ;

by (12), when p0ij¼2 or pij¼0, the expression for genetic

variance between a relative pair is the same regardless LD is

present or not. In fact, from the derivation in Appendix B,

this conclusion is true for any consistent composite

genotype specification: under random mating and any

consistent specification P(G) of the composite genotype,

the IBD status (p0ij,pij) of a relative pair (i, j) contributes

information of LD to their genetic variance at the trait

locus only if p0ijr1 and pijZ1.

Again in practice, given the estimated IBD probabilities,

the covariance is computed as

CovðYi;Yjjf ; zÞ ¼
X2
k¼0

CovðYi;Yjjf ; z; pij ¼ kÞPðpij ¼ kÞ: ð13Þ

Parameter estimation

Let b¼ (m, Z1,y, Zj)
T be the parameters in the mean,

a¼ (y, f, z,s2a, s
2
d,s

2
G, s

2
e ,s

2
0, s

2
1,s

2
2, s

2
3,s11, s12, s13)

T be the

parameters in the covariance matrices, yk be the observa-

tions of all the members in the kth family, and

mk¼ mk(b)¼E(Yk)¼Xkb, where Xk is the covariate matrix

for the kth family, and nk is the total number of individuals

in this family. The commonly used model based estimation

method is MLE, while the common model for quantitative

trait is the normal distribution. Under these assumptions,

the likelihood of the kth family is Lk(a,b|Yk)¼f(Yk�mk|Ok),

where f(Y�m|O) is the density of the nk dimensional

normal N(m,O) distribution, Ok ¼ ðoijÞnknk
is the covariance

matrix of the kth family, with

oij ¼CovðYi;Yjjf ; z; gijÞ

¼
X2
r¼0

CovðYi;Yjjf ; z; pij ¼ rÞPðpij ¼ rjgijÞ

as specified in (12) in the most general case. The

P(pij¼ r|gij)’s can be obtained by some common IBD

computation methods. The covariances can also take any

of the more specific form (8), (6), (3) and (2) in the

equilibrium case. Here we used (Yi,Yj) for (Yki,Ykj), the

(i, j)th relative pair in the kth family. The total likelihood is

thus L(a, b|Y)¼Pk
k¼ 1Lk(a,b|Yk), and the log-likelihood,

omitting the normalizing constant, is

logLða; bjYÞ ¼ �1

2


XK
k¼1

log jOkj þ ðYk � mkÞ0O�1
k ðYk � mkÞ:

ð14Þ

The MLE is the parametric value (â, b̂) that maximizes (14),

and it has many desired optimality properties.

Power

The power of the method can be easily estimated and will

shown is dependent only on the parameters a in the

covariance matrix. Let H0:a¼ a0 and H1:a¼ a1 (H0CH1 or a0
be part of a1) be the null and alternative hypothesis

considered in the previous sections, dim(H1)�dim(H0)¼ k

and f( � |a, b) be the density of the model considered. Let â0
and â1 be the MLE of a under H0 and H1, respectively. Note

our hypothesis only involves a, not the parameters b in the

mean specification. Let

Tn ¼ �2 log
Lðâ0; b̂jYÞ
Lðâ1; b̂jYÞ

and

Dða1jja0Þ ¼
Z

f ðxja1; bÞ log
f ðxja1; bÞ
f ðxja0; bÞ

dx

be the relative entropy (Kullback–Leibler divergence)

between the two densities f( � |a1,b1) and f( � |a0,b0). It is

known that D(a1||a0)Z0 with equality hold if and only if

a1¼ a0. Assuming homogenous familial structures for all
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the families, for give level g40, the asymptotic power qn for

the likelihood ratio test of H0 vs H1, with a dataset of size

(number of families) n, is (Appendix C)

qn ¼ P Tn4w2kð1� gÞ
� �

� P Vk4w2kð1� gÞ � 2nDða1jja0Þ
� �

; ð15Þ

where Vk is the w2 random variable with k degrees of

freedom and w2k(1�g) is its 1�g upper quantile.

Given f( � | � , � ), a1 and a0, D(a1||a0) can be easily

computed. In fact, since our model f( � | � , � ) is multivariate

normal, it is easy to see that

Dða1jja0Þ ¼
1

2
log

Oða0Þj j
Oða1Þj j

þ 1

2
½trððO1=2ða1ÞÞ0O�1ða0ÞO1=2ða1ÞÞ � d
;

where d¼dim(m), O( � ) is the Ok’s with the elements given

in (12), in which the tij’s take the theoretical mean values.

To plot the power surface, we fix the parameter values at

their MLE, except those for f and z. Then for a given g40

and a set of selected (f, z) values, we can compute

qn¼ qn(g, f, z) for different g, f, z and n.

Application
Simulation study

Data of 10000 sibpairs are simulated in our study. We give

some detailed description of how the two levels of

disequilibria are incorporated in the simulation process.

It can be described in the following three steps.

Step 1 For each sibpair we simulate the their trait

genotypes gis and the marker IBD probabilities pijs. Let

Gi¼ (aras)/(AkAl) be the composite genotype of the trait and

marker for the ith individual, with lower case letters aras for

marker genotype. we simulate (Gi, Gj) for each sibpair, and

pij is generated along. We first generate the composite

genotypes Gf of the father and Gm of the mother by the

probability given in (11) with z¼0.1, and pkl and qrs are

given (4) and (10) with f¼0.12, p1¼0.55, p2¼0.45,

q1¼0.65 and q2¼ 0.35. Although (Gf, Gm) are not part of

the data to be used in the computation, they are needed to

generate the sibs composite genotypes. Now given (Gf, Gm)

we generate Gi, Gj and pij as below. Let Gf¼ (af1 af2)/(Af1

Af2), Gm¼ (am1 am2)/(Am1 Am2). During meiosis, if there is

no recombination (with probability 1�y, y¼0.25), Gf splits

into two gametes (af1/Af1) and (af2/Af2). Then one of the

gametes is selected with probability 0.5 to pass to the next

generation. Here we only consider the recombination at

the marker, since we want the IBD pij at the marker. The

recombination at the trait is similar, and we omit it for

simplicity, since this will not affect the probabilities of the

Gis. Similarly, Gm will split into (am1/Am1) and (am2/Am1), or

(am2/Am1) and (am1/Am2), and one of the gamets is selected

with probability 0.5 to pass to the next generation. For

example, if for the father, there is recombination during

meiosis and (af1/Af1) is selected, and for the mother there is

no recombination during meiosis and (am1/Am1) is selected,

then Gi¼ (af1 am1)/(Af2 Am1) and gi¼ (Af2Am1). Repeat the

above process to get, say, Gj¼ (af2 am1)/(Af1 Am1) and

gj¼ (Af1Am1). Since at the marker locus, sibpair (i, j) has a

composite genotype (af1am1, af2am2), we have pij¼1, which

comes from the common maternal allele am1.

Step 2 Simulate each pair’s covariates. The mean mI of the
ith individual is given by (1). Specifically, we take m¼ 23,

gi¼1 if individual i has genotype A1A1¼0 if A1A2, and

¼�1 if A1A2. We take GiBN(0,s2
G) with s2

G¼ 0.2. Two

covariates are genetated, xi1 and xi2, stand for age (years)

and sex index for the ith individual, xi2¼ 1 for female and

¼0 for male. The coefficient for age is Z1¼0.2 and that for

sex is Z2¼1.5. ei is the random error from N(0, 1)

distribution.we always assume the first dib is younger with

xi1BU[10, 60], then for the second sib, with xj1¼ xi1þ z

with zBU[1, 10]. For xi2, using the gender ratio from the

real data, we sample zBU(0, 1), if zr0.54 let xi2¼1

(female) otherwise 0 (male).

Step 3 Simulates the sibpair covariance matrices

Oij¼Cov(Yi,Yj)¼ (oij) and the final observed trait values.

By (3.9), o11¼o22¼ (1þ f/2)s2aþ (1�f)s2dþ fs20þ s2Gþ s2e ,
s2a¼2Ska

2
kpk, a2d¼Sk,ld

2
klpkpl, s20¼Skd

2
kkpk and pk is the

population proportion of allele Ak, dkl¼ mkl�ak�al,
ak¼Slmklpkl/[(1þ f)pk], pkl¼ (1�f)pkplþ fpkI(l¼ k) is the po-

pulation proportion of genotype AkAl, and mkl¼E(Y|g¼
AkAl)¼ mþ gklþ ZlE(xi1)þ Z2E(xi2)¼ mþ gklþ40Z1þ0.54Z2,
o12 ¼ o21 ¼

P9
k¼7 DkijðpijÞgkðf ; z; pijÞ þ 2Fijs2G as is given in

(3.9), and for sibpairs Fij¼1/4. Dkij(pij) is defined after (8)

and can be found in Wright,18 where they are implemented

in terms of the recombination fraction y. The marker IBD

data pijs are generated above, the trait IBD p0ij are unknown,

but only the conditional probability P(p0ij|pij)s are used,

which are easily derived.20 The gk(f, z,pij)s are defined after

(12). The definition of s1,2 involved p(kl)(km) which is given

in the definition of the gk(f, ,z,pij)s. Now we have

implemented Oij and are ready to simulated the yis. We

simulate the data pairwise. For a sibpair (yi, yj), denote

Y¼ (yi, yj) and m¼ (mi,mj). We sample ZBN(0, I2), the two-

dimensional standard normal distribution, and let Y ¼
O1=2

ij Z þ m, and simulate such Y 10000 times.

For g8(f, z, pij) in te case pij¼2, s1, 1, s1, 2 and s1, 3 are not

independently estimable, so in this case we write

g8(f, ,z, 2)¼ (1�z)g8(f)¼ s4
2, where s4

2¼�z(1þ f)s1, 1þ
2zs1, 2þ z2s1, 3 viewed as a single parameter to be estimated.

Table 1 displays the values of the real parameters of

interest from the simulation, and their MLE estimates

(estimated standard deviation in bracket) under H0:

f¼ z¼0.0 and H1: all parameters free, respectively.

The difference 2(log likelihood(H1)�log likelihood(H0))¼
20.9934, with a P-value of 0.000106 under a w2 distribution
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with two degrees of freedom, that is, the evidence of

rejecting H0 is very strong. This example shows that

incorporating the disequilibria mechanism into the var-

iance components model can improve the inference

significantly when such disequilibria are present.

Real data application

We used the AADM data (African-American Diabetes

mellitus) to illustrate the method. The data is from an

international collaboration between West Africa and US

investigators in mapping type II diabetes susceptibility

genes in West African ancestral populations of African-

Americans. Affected sib-pairs along with unaffected spouse

controls were being enrolled. Eligible participants were

invited to study clinics to obtain detailed epidemiological,

familial and medical history information. For detailed

description of the data, see Rotimi et al.21 For this data we

computed the model parameter estimates using VC model

(2), or under the hypothesis of equilibria, H0: f¼ z¼0; and

under the VC model with Hardy–Weinberg/LD (12), H1:f

and z are free parameters, to fit the data. The response

variable is BMI, the covariate is age. The results are shown

in Table 2, where the estimated standard deviations are

listed inside the brackets.

The �2 loglikelihood difference is 12.5076 with a P-value

of 0.0058, which is highly significant. So the inference

should be based on H1. We see a large Hardy–Weinberg

disequilibrium at the triat locus, suggesting that the

genetic background of the sample under study is not as

simple as assumed by the existing VC model. The low

recombination rate (0.0016) indicates that the trait and

marker loci are tightly linked, and the LD between the trait

and marker is non-negligible. The overall BMI of this

sample is 23.58, and the age effect is 0.053, which are quite

common for normal populations.

The power depends on all the parameters in the model,

we highlight its dependence on (f, Z) to study its relation-

ship with these two parameters. Using (15) and the

parameters above, the following Figure 1 shows the powers

of the likelihood ratio test for H0 vs H1, for various

combinations of f, z, and n.

Since the LD depends on the unobservable trait geno-

type, its needs larger sample size to detect. For the real data,

with the observations and the estimated parameter setting,

it is easy to detect the HWE disequilibrium with reasonable

sample size, while it is very difficult to detect the LD, or

requires very large sample size to achieve high power. For

the simulated data-parameter setting, the powers are high

for the joint HWE disequilibrium, LD and the joint HWE

and LD disequilibria.

The software for this extended VCmodel is written in SAS;

the current version is for sibpair familial structure only,

and is available upon request from the second author at

gchen@genomecenter.howard.edu. The CPU time to com-

pute the parameter estimates depends on the machine,

data size, number of regressors, pedigree structure and

starting values for the parameters etc. For the two examples

above, with suitably chosen starting values, the CPU times

for computing the MLEs are 27.24 and 27.33 s on our

machine.

Discussion
We have generalized the VC model to the cases of the

Hardy–Weinberg and LD or both, this gives more practical

application of this popular model. In some practices, these

disequilibria are not justified. In these cases, the existing

VC model is clearly inadequate, and our generalized VC

model might be beneficial in more estimates, and in

enhancing the inference power of parameters of interest.

Also this generalized model can be used in testing these

disequilibria by forming the corresponding likelihood ratio

statistic, along with the parameter estimates. Other

inferences on one or both of the two disequilibria are

sometimes also of direct interest, which are now available

under this generalized VC model.

We computed the variance components for some

common relative pairs. The cases of other relative pairs

are similar and straightforward. We considered the para-

meter estimation in several ways and computed the IBD

under some common cases.

Table 1 Parameter estimates for the simulated data
under H0 and H1

Parameter Real Under H0 Under H1

f 0.12 0.00 0.1253 (0.1473)
z 0.10 0.00 0.1089 (0.2229)
y 0.25 0.2470 (0.1052) 0.2468 (0.1163)
m 23 23.0430 (4.3663) 23.4938 (4.8503)
Z1 1.5 1.3661 (2.7195) 1.5611 (2.9335)
Z2 0.2 0.2057 (0.1053) 0.1882 (0.1164)

Log-likelihood �89736.12 �89725.63

Table 2 Parameter estimates for the AADM data under H0

and H1

Parameter estimates Under H0 Under H1

m 22.874 (2.8530) 23.582 (0.000365)
Z1 0.075 (0.0495) 0.053 (0.000063)
y 0.5 0.00157 (0.000384)
f 0 0.2349 (0.00026)
z 0 0.0530 (0.00285)
sa
2 4.146 (1.146) 3.5419 (4.947)

se
2 5.6214 (0.7581) 5.6423 (4.039)

Log-likelihood �1136.60 �1130.34
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Further extensions/modifications to implement more

features will be similar, such as the multivariate traits,9 the

multipoint VC, dichotomous trait, robust LOD score

correction,7 the conditioning adjustment.21
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Appendix A
We first derive (5). When fixed Ak, the events AkAl and

AkAm are independent, so by (4) we have,

pðklÞðkmÞ ¼PðAkAl;AkAmÞ ¼ PðAkÞPðAkAl;AkAmjAkÞ

¼PðAkÞPðAkAmjAkÞ ¼
PðAkAlÞPðAkAmÞ

PðAkÞ

¼ pklpkm
pk

¼ pk½ð1� f Þpl þ fIðl ¼ kÞ


½ð1� f Þpm þ fIðm ¼ kÞ
:

For (6), we use the method as in Lange16 (pp. 87–89). Since

0 ¼ EðgÞ ¼
P
k

P
l

mkl and the ak’s minimize the squared error

P
k

P
l

ðmkl � ak � alÞ2pkl, take derivative with respect to ak, we

get X
l

dklpkl ¼ 0; all k: ðA:1Þ

Sum over k in (A.1) we have

0 ¼
X
k

X
l

ðmkl � ak � alÞpkl ¼ �2
X
k

X
l

akpkl

¼ �2
X
k

ak: ðA:2Þ

Now (A.1) and (A.2) gives

0 ¼
X
l

ðmkl � ak � alÞpkl ¼
X
l

mklpkl � akpk �
X
l

alpkl

¼
X
l

mklpkl � akpk �
X
l

al½ð1� f Þpkpl þ fpkIðl ¼ kÞ


¼
X
l

mklpkl � akpk � f akpk;

that is,

ak ¼
1

ð1þ f Þpk

X
l

mklpkl:

Then we have

CovðYi;Yjjf Þ ¼ Covðgi; gjjf Þ þCovðGi;GjÞ þ Covðei; ejÞ:

When i¼ j, Cov(Gi,Gj)¼ sG
2 , Cov(ei, ej)¼ se

2 and

Covðgi; gijf Þ ¼ Eðg2i Þ ¼
X
k

X
l

ðak þ al þ dklÞ2pkl:

By (A.1), the above isX
k

X
l

a2kpkl þ
X
k

X
l

a2l pkl þ
X
k

X
l

akalpkl

þ
X
k

X
l

d2kpkl ðA:3Þ

Since
P

lpkl¼
P

lplk¼ pk, we haveX
k

X
l

a2kpkl þ
X
k

X
l

a2l pkl þ 2
X
k

a2k
X
l

pkl ¼ 2
X
k

a2kpk ¼ s2a ;

X
k

X
l

akakpkl ¼
X
k

X
l

akal½ð1� f Þpkpl þ fpkIðl ¼ kÞ


¼ f
X
k

a2kpk ¼
f

2
s2a ;

and X
k

X
l

d2klpkl ¼
X
k

X
l

akl½ð1� f Þpkpl þ fpkIðl ¼ kÞ


¼ ð1� f Þ
X
k

X
l

d2klpkpl þ f
X
k

d2kkpk

¼ ð1� f Þs2d þ f s20;

so by (A.3) and the above three equations we have

Covðgi; gijf Þð1þ ðf =2ÞÞs2a þ ð1� f Þs2d þ f s20:

If iaj, Cov(eiej)¼0, by the central limit theorem of Lange22

and assume no dominance, we have approximately

Cov(Gi,Gj)¼2FijsG
2 and

Covðgi; gjjf Þ ¼ Eðgigjjf Þ ¼ D7ij

X
k

X
l

ðak þ al þ dklÞ
2
pkl

þ D8ij

X
k

X
l

X
m

ðak þ al þ dklÞðak þ am þ dkmÞpðklÞðkmÞ

þ D9ij

X
k

X
l

X
m

X
n

ðak þ al þ dklÞðam þ an þ dmnÞpklpmn:

By (A.1) and (A.2), the coefficient D9ij is zero. By the

calculation for E(gi
2), the first term above is

D7ij 1þ f

2

� �
s2a þ ð1� f Þa2d þ f s20

� �
; ðA:4Þ

the second term is

D8ij

X
k

X
l

X
m

a2kpðklÞðkmÞþ
" X

k

X
l

X
m

akampðklÞðkmÞ

þ
X
k

X
l

X
m

akdkmpðklÞðkmÞ þ
X
k

X
l

X
m

alakpðklÞðkmÞ

þ
X
k

X
l

X
m

alampðklÞðkmÞ þ
X
k

X
l

X
m

aldkmpðklÞðkmÞ

þ
X
k

X
l

X
m

akdklpðklÞðkmÞ þ
X
k

X
l

X
m

amaklpðklÞðkmÞ

þ
X
k

X
l

X
m

dkldkmpðklÞðkmÞ

#
:
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From (5) it is easy to check thatX
m

pðklÞðkmÞ ¼ pkl;
X
l

pðklÞðkmÞ ¼ pkm;X
k

pðklÞðkmÞ ¼ ð1� f 2Þplpm þ f 2plIðm ¼ lÞ;
ðA:5Þ

so by (A.2) the coefficient of D8ij isX
k

a2kpk þ 2
X
k

X
l

akalpkl þ
X
l

X
m

alamðð1� f 2Þplpm

þ f 2plIðl ¼ mÞÞ þ 2
X
k

X
l

X
m

aldkmpðklÞðkmÞ

þ
X
k

X
l

X
m

dkldkmpðklÞðkmÞ:

Since
P

k

P
lakalpkl¼ fsa

2/2, the above is

1

2
þ f þ f 2

2

� �
þ 2

X
k

X
l

X
m

aldkmpðklÞðkmÞ

þ
X
k

X
l

X
m

dkldkmpðklÞðkmÞ: ðA:6Þ

By (5) and (A.1), the middle term in the above is

2
X
k

X
l

alðpkl=pkÞ
X
m

dkmpkm ¼ 0:

By the same way, the last term in (A.6) isX
k

X
l

dklðpkl=pkÞ
X
m

dkmpkm ¼ 0;

so the coefficient of D8ij is

ð1þ f Þ2

2
s2a : ðA:7Þ

Now collecting terms we have

Covðgi; gjjf Þ ¼D7ij 1þ f

2

� �
s2a þ ð1� f Þs2d þ f s20

� �

þ D8ij
ð1þ f Þ2

2
s2a :

Appendix B
When i¼ j, pii0 ¼ 2 which is noninformative about trait-

marker relationship, so Covðgi; gijf ; z; piiÞ ¼ Covðgi; gijf Þ ,

which has the same expression as in (8). When iaj,

Covðgi; gjjf ; z;pijÞ ¼ D7ijðpijÞ
X
k

X
l

ðak þ al þ dklÞ2pðklÞðklÞjp0 ij¼2

þ D8ijðpijÞ
X
k

X
l

X
m

ðak þ al þ dklÞðak þ am þ dkmÞpðklÞðkmÞjp0 ij¼1

þ D9ijðpijÞ
X
k

X
l

X
m

X
n

ðak þ al þ dklÞðamþanþdmnÞpðklÞðmnÞjp0 ij ¼ 0:

ðB:1Þ

We first derive the conditional probabilities p0ðklÞðmnÞjpijs in

(B.1). Since conditioning on the IBD status, those quan-

tities are independent of relatedness of the pair, only

depend on the relationships among the trait and marker

alleles through f and z, in other words, given IBD status,

different alleles in one configuration are independent with

those in the other one. We have

pðklÞðklÞjp0
ij
¼0 ¼

X
r

X
s

X
u

X
v

P
AkAl

aras
;
AkAl

auav

� �
:

Now the two configurations share AkAl in common, if we

fix it, the two configurations are independent each other,

so we rewrite the above asX
r

X
s

X
u

X
v

PðAkAlÞP
AkAl

aras
;
AkAl

auav

����AkAl

� �

¼ PðAkAlÞ
X
r

X
s

X
u

X
v

P
AkAl

aras

����AkAl

� �
P

AkAl

auav

����AkAl

� �

¼ PðAkAlÞ
X
r

X
s

X
u

X
v

P ðAkAlÞ=ðarasÞð Þ
PðAkAlÞ

P ðAkAlÞ=ðauavÞð Þ
PðAkAlÞ

¼ 1

pkl

X
r

X
s

X
u

X
v

pðkl;rsÞpðkl;uvÞ ¼ pkl:

ðB:2Þ

Similarly,

pðklÞðkmÞjp0
ij
¼0

¼
X
r

X
s

X
u

X
v

P
AkAl

aras
;
AkAm

auav

� �

¼ PðAkÞ
X
r

X
s

X
u

X
v

P
AkAl

aras
;
AkAm

auav

����Ak

� �

¼ PðAkÞ
X
r

X
s

X
u

X
v

P
AkAl

aras

����AkAl

� �
P

AkAm

auav

����AkAl

� �

¼ 1

pk

X
r

X
s

X
u

X
v

pðkl;rsÞpðkm;uvÞ ¼
pklpkm
pk

;

ðB:3Þ

pðklÞðmnÞjp0
ij
¼0 ¼

X
r

X
s

X
u

X
v

P
AkAl

aras
;
AmAn

auav

� �

¼
X
r

X
s

P
AkAl

aras

� �X
u

X
v

P
AmAn

auav

� �

¼
X
r

X
s

pðkl;rsÞ
X
u

X
v

pðmn;uvÞ ¼ pklpmn;

ðB:4Þ

pðklÞðklÞjp0
ij
¼0 ¼

X
r

X
s

X
u

1

2
P

AkAl

aras

AkAl

auav

� ��

þ 1

2
P

AkAl

asar
;
AkAl

auar

� ��
;

and

X
r

X
s

X
u

P
AkAl

aras
;
AkAl

arau

� �

¼
X
r

X
s

X
u

P
AkAl

ar

� �
P

AkAl

aras
;
AkAl

arau

����AkAl

ar

� �

¼
X
r

X
s

X
u

pðkl;rÞ
pðkl;rsÞ
pðkl;rÞ

pðkl;ruÞ
pðkl;rÞ

¼
X
r

X
s

X
u

pðkl;rsÞpðkl;ruÞ
pðkl;rÞ

¼
X
r

pðkl;rÞpðkl;rÞ
pðkl;rÞ

¼ pkl;
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where p(kl, r)¼
P

sp(kl, rs). The same reason givesX
r

X
s

X
u

P
AkAl

asar
;
AkAl

auar

� �
¼ pkl;

so we have

pðklÞðklÞjp0
ij
¼ 1 ¼ pkl: ðB:5Þ

Also

pðklÞðklÞjp0
ij
¼1 ¼

X
r

X
s

X
u

pðkl;rsÞpðkm;ruÞ

pðk;rÞ
¼
X
r

pðkl;rÞpðkm;rÞ

pðk;rÞ
;

where

pðkl;rÞ ¼
X
s

pðkl; rsÞ ¼ pklðqr � zprÞ þ zpklIðr ¼ kÞ

andpðk;rÞ ¼
X
l

pðkl; rÞ ¼ pkðqr � zprÞ þ zpkIðr ¼ kÞ:

So

pðklÞðkmÞjp0
ij
¼1

¼
X
r

pklðqr �zprÞþzpklIðr ¼ kÞ½ 
 pkmðqr � zprÞ þ zpkmIðr ¼ kÞ½ 

pkðqr � zprÞ þ zpkIðr ¼ kÞ

¼
X
r 6¼k

pklpkm
pk

qr � zprð Þ

þ pklðqk � zpkÞ þ zpkl½ 
 pkmðqk � zpkÞ þ zpkm½ 

pkðqk � zpkÞ þ zpk

¼ pklpkm
pk

;

ðB:6Þ

pðklÞðmnÞjp0
ij
¼1 ¼

X
r

X
s

X
u

1

2

pðkl;rsÞpðmn;ruÞ

qr
þ 1

2

pðkl;srÞpðmn;urÞ

qr

� �
;

X
r

X
s

X
u

pðkl;rsÞpðmn;ruÞ
qr

¼
X
r

pðkl;rÞpðmn;rÞ
qr

¼ pklpmn

X
r

1

qr
qr � zpr þ zIðr ¼ kÞð Þ

 qr � zpr þ zI r ¼ mð Þð Þ

¼ pklpmn 1þ z2
X
r

p2r
qr

� z2
pm
qm

þ pk
qk

� �
þ z2

Iðk ¼ mÞ
qk

" #
;

and X
r

X
s

X
u

pðkl;srÞpðmn;urÞ
qr

¼ pklpmn 1þ z2
X
r

p2r
qr

� pn
qn

� pl
ql

þ Iðn ¼ lÞ
ql

 !" #
;

so

pðklÞðmnÞjp0
ij
¼1 ¼pklpmn 1þ z2

X
r

p2r
qr

� 1

2

pm
qmþ

pk
qk

þ pn
qn

þ pl
ql

� � "

þ 1

2

Iðk ¼ mÞ
qk

þ Iðn ¼ lÞ
ql

� ���
ðB:7Þ

Also

pðklÞðklÞjp0
ij
¼2 ¼

X
r

X
s

P
AkAl

aras

� �
¼
X
r

X
s

pðkl;rsÞ¼pkl; ðB:8Þ

and

pðklÞðkmÞjpij¼2 ¼
X
r

X
s

P
AkAl

aras
;
AkAm

aras

� �

¼
X
r

X
s

P
Ak

aras

� �
P

AkAl

aras
;
AkAm

aras

Ak

aras

����
� �

¼
X
r

X
s

P
Ak

aras

� �
P

AkAl

aras

Ak

aras

����
� �

P
AkAm

aras

Ak

aras

����
� �

¼
X
r

X
s

pðkl;rsÞpðkm;rsÞ

pðk;rsÞ
;

where p(k, rs)¼
P

lp(kl, rs)¼ pk(qrs�zprsþ z(1�f)psI(r¼ k)þ zI(r¼
s¼ k)), so

pðklÞðkmÞjp0
ij
¼2 ¼ pklpkm

pk

X
r

X
s

qrs � zprs þ zI ðr; sÞ ¼ ðk; lÞð Þð Þ

 ðqrs � zprs þ zIððr; sÞ ¼ ðk;mÞÞÞ
qrs � zprs þ zð1� f ÞpsIðr ¼ kÞ þ zIðr ¼ s ¼ kÞ

¼ pklpkm
pk

ð1� zÞ � ðqk � zpkÞ½ 


þ
X
s

ðqks � zpksÞ2

qrs � zprs þ zð1� f Þps þ zIðs ¼ kÞ

þ 2zðqkm � zpkmÞ
qkm � zpkm þ zð1� f Þpm þ zfIðk ¼ mÞ

þ z2Iðl ¼ mÞ
qkm � zpkm þ zð1� f Þpm þ zfIðl ¼ mÞ

#
:

ðB:9Þ
Lastly

pðklÞðmnÞjp0
ij
¼2 ¼

X
r

X
s

P
AkAl

aras
;
AmAn

aras

� �

¼
X
r

X
s

P arasð ÞP AkAl

aras
;
AmAn

aras
arasj

� �

¼
X
r

X
s

pðkl;rsÞpðmn;rsÞ
qrs

¼
X
r

X
s

pklðqrs � zprsÞ þ zpklIððr; sÞ ¼ ðk; lÞÞ½ 


 pmnðqrs � zprsÞ þ zpmnIððr; sÞ ¼ ðm;nÞÞ½ 

qrs

¼pklpmn 1þ z2
X
r

X
s

p2rs
qrs

� z2
pmn

qmn
þ pkl
qkl

� �"

þ z2Iððk; lÞ ¼ ðm;nÞÞ
�
:

ðB:10Þ
Now we compute the covariance (B.1) for different values

of the p0ij’s. If p0ij¼ 0, by (B.2)–(B.4) and Appendix A, we

have the same expression of (B.1) as in (8).

If p0ij¼1, by (B.5)–(B.7), the coefficient of D7ij(pij) and

D8ij(pij) in (B.1) are the same as that in (A.4) and (A.7); the

coefficient of D9ij(pij) in (B.1) has four terms corresponding

to those in (B.7), the first two terms are zero by the

computation in Appendix A, by its symmetry in (k, l,m,n),

VC Model
A Yuan et al

950

European Journal of Human Genetics



the last two terms areX
k

X
l

X
m

X
n

ak þ al þ dklð Þ am þ an þ dmnð Þ

�2z2
pklpmnpm

qm
þ z2

pklpmn

qk
Iðm ¼ kÞ

� �
;

ðB:11Þ

since X
k

X
l

ak þ al þ dklð Þpkl ¼ 0;

the first term above is zero. By expanding and check each

term using (A.1) and (A.2), the second term above, and

hence the coefficient of D9ij(pij) is

z2ð1þ f Þ2
X
k

a2k
p2k
qk
:

If p0ij¼2, by (B.8), the coefficient of D7ij(pij) is the same as

before. Now we compute the coefficient of D8ij(pij). We

expand it in five terms as in (B.9). The first term is

(1þ f)2(1�z)sa
2/2 by the computation in Appendix A.

Expanding the same way as in Appendix A, the second

term is

�
X
k

a2kpkðqk � zpkÞ � 2
X
k

X
l

akalpklðqk � zpkÞ

�
X
k

X
l

X
m

akal
pklpkm
pk

ðqk � zpkÞ

� 2
X
k

X
l

X
m

aldkm
pklpkm
pk

ðqk � zpkÞ

�
X
k

X
l

X
m

dkldkm
pklpkm
pk

ðqk � zpkÞ;

ðB:12Þ

the last two terms above are zero by (A.1). SinceX
l

alpkl ¼ f akpk; ðB:13Þ

substitute this into the second and the third term in (B.12),

it becomes �(1þ f)2
P

kak
2pk(qk�zpk). By expanding the same

way, the third term is

X
k

a2kpk
X
s

ðqks � zpksÞ2

qks � zpks þ zð1� f Þps þ zfIðq ¼ kÞ

þ 2
X
k

X
l

akalpkl
X
s

ðqks � zpksÞ2

qks � zpks þ zð1� f Þps þ zfIðs ¼ kÞ

þ
X
k

X
l

X
m

alam
pklpkm
pk

X
s

ðqks � zpksÞ2

qks � zpks þ zð1� f Þps þ zfIðs ¼ kÞ

þ 2
X
k

X
l

X
m

aldkm
pklpkm
pk

X
s

ðqks � zpksÞ2

qks � zpks þ zð1� f Þps þ zfIðs ¼ kÞ

þ
X
k

X
l

X
m

dkldkm
pklpkm
pk

X
s

ðqks � zpksÞ2

qks � zpks þ zð1� f Þps þ zfIðs ¼ kÞ:

ðB:14Þ

The last two terms in (B.14) are zero. Substitute (B.13) into

the second and third term in (B.14), it becomes

ð1þ f Þ2
X
k

a2kpk
X
s

ðqk � zpksÞ2

qks � zpks þ zð1� f Þps þ zfIðs ¼ kÞ;

now combine the second and the third terms gives

�zð1þ f Þ2
X
k

a2kpk
X
s

ðqks � zpksÞ ð1� f Þps þ fIðs ¼ kÞ½ 

qks � zpks þ zð1� f Þps þ zfIðs ¼ kÞ;

the fourth term is

2z
X
k

X
l

X
m

ak þ al þ dklð Þ ak þ am þ dkmð Þ

pðklÞðkmÞðqkm � zpkmÞ
qkm � zpkm þ zð1� f Þpm þ f zIðk ¼ mÞ ;

the fifth term is

z2
X
k

X
l

ak þ al þ dklð Þ2 p2kl
pk qkl � zpkl þ zð1� f Þpl þ f z½ 
 :

For the coefficient of D9ij(pij), we expand it in four terms

according to (B.10), the first two terms are zero by the

computation in Appendix A, so it reduces toX
k

X
l

X
m

X
n

ak þ al þ dklð Þ am þ an þ dmnð Þ

�2z2pkl
p2mn

qmn
þ z2pklpmnIððk; lÞ ¼ ðm;nÞÞ

� �
;

the first term above is zero since
P
k

P
l

ðak þ al þ dklÞpkl ¼ 0,

the second term, and hence the coefficient of D9ij(pij) is

z2
P
k

P
l

ðak þ al þ dklÞ2p2kl, which is

z2 2
X
k

X
l

a2kp
2
kl þ

X
k

X
l

d2klp
2
kl þ 4

X
k

X
l

akdklp2kl

"

þ 2
X
k

X
l

akalp2kl

#
:

The first term in the bracket above is

2
X
k

X
l

a2k ð1� f Þpkpl þ fpkIðl ¼ kÞ½ 
2

¼ 2ð1� f Þ2
X
k

X
l

a2kp
2
kp

2
l þ 4f ð1� f Þ

X
k

a2kp
3
k

þ 2f 2
X
k

a2kp
2
k ;

the second term isX
k

X
l

d2kl ð1� f Þpkpl þ fpkIðl ¼ kÞ½ 
2

¼ ð1� f Þ2
X
k

X
l

d2klp
2
kp

2
l þ 2f ð1� f Þ

X
k

d2kkp
3
k

þ f 2
X
k

d2kkp
2
k ;

the third term is

4
X
k

X
l

akdkl 1� fð Þpkpl þ fpkI l ¼ kð Þ½ 
2

¼ 4ð1� f Þ2
X
k

X
l

akdklp2kp
2
l þ 8f ð1� f Þ

X
k

akdkkp3k

þ 4f 2
X
k

akdkkp2k ;
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the fourth term is

2
X
k

X
l

akal ð1� f Þpkpl þ fpkIðl ¼ kÞ½ 
2

¼ 2ð1� f Þ2
X
k

akp2k

 !2

þ4f 1� fð Þ
X
k

a2kp
3
k

þ 2f 2
X
k

a2kp
2
k :

Now collect terms, the coefficient of D9ij(pij) is

z2 2ð1� f Þ2
X
k

X
l

a2kp
2
kp

2
l þ 8f ð1� f Þ

X
k

a2kp
3
k

"

þ 4f 2
X
k

a2kp
2
k þ ð1� f Þ2

X
k

X
l

d2klp
2
kp

2
l

þ 2f ð1� f Þ
X
k

d2kkp
3
k þ f 2

X
k

d2kkp
2
k

þ 4ð1� f Þ2
X
k

X
l

akdklp2kp
2
l þ 8f ð1� f Þ

X
k

akdkkp3k

þ 4f 2
X
k

akdkkp2k þ 2ð1� f Þ2
X
k

akp2k

 !2
3
5:

Appendix C
Let x¼ (a,b), x0¼ (a0, b), and define x1 and the hat

notations for the corresponding estimates. Let Î(x) be the

empirical Fisher information matrix evaluated at (x), by

Taylor expansion,

L x̂0jY
	 


¼ L x0jYð Þ þ n

2
x̂0 � x0
	 


0 Î�1 x0ð Þ x̂0 � x0
	 


þ oPð1Þ;

L x̂1jY
	 


¼ L x1jYð Þ þ n

2
x̂1 � x1
	 


0 Î�1 x1ð Þ x̂1 � x1
	 


þ oPð1Þ;

and its is well known that, under H1, as n-N,

n

2
x̂1 � x1
	 
	 


0 Î�1 x1ð Þ x̂1 � x1
	 


� x̂0 � x0
	 


0 Î�1 x0ð Þ x̂0 � x0
	 


!D w2k :

Also, since the familial structures are homogeneous, so

log
L a1jYð Þ
L x0jYð Þ ¼n

1

n

Xn
i¼1

log
L x1jYið Þ
L x0jYið Þ

¼nD a1 a0kð Þ þ oP
ffiffiffi
n

p� �
:

Thus under H1,

� 2 log
L x̂0jY
	 


L x̂1jY
	 
 ¼ 2 log

L x1jYð Þ
L x0jYð Þ

�

þn

2
x̂1 � x1
	 
0

Î�1 x1ð Þ x̂1 � x1
	 


� x̂0 � x0
	 
0

Î�1 x0ð Þ x̂0 � x0
	 



� 2nD a1jja0ð Þ þ w2k :
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