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Use of phenotypic covariates in association analysis
by sequential addition of cases
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Optimal use of phenotype information is important in complex disease gene mapping. We describe a
method, sequential addition, for the analysis of case–control data by taking into account of a quantitative
trait that is measured in cases but not in controls. The method also provides an estimate of the best
phenotype definition for future studies. We demonstrate proof of principle, using an example of
incorporation of age-at-onset data into a study of a small sample for association between APOE and
late-onset Alzheimer’s disease. The sequential addition method finds evidence of association when
conventional case–control methods fail. We also illustrate the use of the method for taking account of a
dimensional measure of psychosis in a study of the schizophrenia susceptibility gene, dysbindin, in bipolar
disorder.
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Introduction
Association studies using either quantitative or qualitative

traits are widely used for molecular genetic studies

of complex disorders. In some circumstances, the available

data will comprise a set of cases and controls where

the cases (but not the controls) are measured for a

quantitative trait. This situation typically arises when the

quantitative phenotype is undefinable in controls; for

example, when the trait is age at onset (AAO) of the disease

under study. This case-only quantitative trait may be

critical in defining a more homogeneous subset of the

available cases. It is now well established that appropriate

phenotype definition is crucial for gene mapping in

complex human disease.1 –5 The problem of appropriate

phenotype definition is particularly acute in psychiatric

disease with many clinical variables being only defined in

case individuals but not in controls. For example, in

Bipolar disorder, scores on the Bipolar Affective Disorder

Dimension Scale (BADDS6) may be useful in more accu-

rately defining the phenotype.

Since the controls have no quantitative trait measure,

conventional approaches for quantitative association ana-

lysis (such as regression) cannot be used. Ad hoc procedures

such as selecting cases with trait values below or above a

particular threshold can be applied, but it is often unclear a

priori what threshold to use. We propose a method,

sequential addition (SA), for analysing case–control data

when there is a quantitative trait measured only in cases

and where no threshold is known. A simulation-based

procedure is used to maintain an appropriate false positive

rate. The SA method is related to the ordered subset

analysis (OSA) described by Hauser et al.7 The OSA method

allows incorporation of quantitiative covariate information

to be used to select informative subsets of families for

linkage analysis. The SA procedure we describe here
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performs the same role for case–control samples with case-

only covariate information.

Here, we demonstrate the potential utility of the SA

method with a previously studied Alzheimer’s disease (AD)

data set and AAO data. The method is then applied to a

Bipolar disorder data set and a quantitative measure of

psychosis.

Materials and methods
The principle of the SA method is to maximise the

significance of the association test between a set of cases

and controls by sequentially adding case individuals in

ascending or descending order according to the value they

have at the quantitative trait. The association test is

repeated for data sets with increasingly large numbers of

cases included. If the quantitative trait is important in

defining the phenotype–genotype relationship at the locus

in question, then one end of the distribution of trait values

will contribute disproportionately to the association signal.

Since many tests are conducted in the procedure, we appeal

to computer simulation methods to determine the overall

significance of the finding. If the effect size in a subset of

the individuals is larger than the effect size in the whole

sample then this may offset the disadvantage of multiple

testing.

The procedure (for a descending SA analysis) is

1. Sort cases by the quantitative trait.

2. Add the case with the (next) highest trait value to the

sample for analysis.

3. Calculate the relevant test statistic for cases versus

controls for marker(s)/haplotype(s) of interest.

4. Repeat steps 2 and 3, adding in cases sequentially and

recalculating.

5. Store the smallest nominal P-value from all the tests

done.

Since comparing a very small number of cases with the

control set is unlikely to yield an interesting result, we

propose adding 10 cases (with highest trait value) in the

first iteration of step 2. For some quantitative traits (eg

AAO), the lower end of the trait distribution may be

thought to be most important in defining a genetically

homogeneous subset. In these cases, it may make sense to

sequentially add cases lowest trait value to highest trait

value. To establish the significance of the P-value obtained

from the above procedure, the set of genotypes are

permuted among the whole sample (cases and controls)

and the procedure is repeated a large number of times. The

empirical P-value, correcting for the multiple tests done,

is the proportion of permutation replicates that yield

P-values smaller than that observed in the actual data set.

The analysis method in step 3 will vary depending on the

test of interest. One basic test is an allelic test of association

at a single SNP, performed using a w2 test (with empirical P-

values when cell counts are small) on a contingency table.

Effect size estimates can be calculated based on the odds

ratio (OR) from the contingency table. Confidence inter-

vals (CI) on the ORs can be obtained using a standard

formula.8 Haplotype-based SA can be implemented by

utilising a haplotype based test in step 3.

The quantitative trait value at which the nominal P-

value minimises (best cutoff) will be of interest because it

will allow future studies to focus on a particular phenotype

definition and thereby maximise power. To calculate a CI

on the estimate of the best trait value cutoff a bootstrap

procedure can be applied. Bootstrapping is where new

samples are generated by randomly sampling case indivi-

duals with replacement.9 The best cutoff is then recalcu-

lated on the new sample. Repeating this procedure over a

large number of replicates and observing the 2.5 and 97.5

percentiles of the cutoffs allows the construction of an

empirical 95% CI. We illustrate the method with the data

sets described below using R.10 In each of the cases below

500 bootstrap replicates were generated.

The SA method was applied to a small subset of a late-

onset AD data set11 for the covariate AAO, clearly

measurable only in cases. The importance of AAO in the

definition of the AD phenotype is well established12,13 and

we demonstrate here the potential utility of the SA method

as a proof of principle. Individuals were added in increas-

ing order of AAO. There are 40 case individuals in our

sample with AAO values ranging from 65 years to 98 years.

Forty control individuals were available. All individuals

were typed for the established AD risk locus APOE with the

alleles coded as the two allele system epsilon4/not

epsilon4.

We then examined a set of data used in a case–control

association analysis of the dysbindin gene in bipolar

disorder.14 The available case data were 592 individuals

with scores for the BADDS6 psychosis dimension (mean

34.1, standard deviation 29.2). Psychosis is measured on a

0–100 scale and has been shown to have a significant

familial component.15,16 A total of 1251 control indivi-

duals were available. All individuals were typed for

rs2619538 from Raybould et al.14 Dysbindin has previously

been implicated in association studies of schizophrenia;17

SNP rs2619538 demonstrated association in our schizo-

phrenia sample, which was recruited from the same clinical

and geographical population and using the same metho-

dology as our bipolar disorder sample.18 In the light of this

positive result in schizophrenia, we hypothesised that the

BADDS psychosis dimension may be important in refining

the phenotype in our bipolar sample. Since it is unknown a

priori what definition of psychosis is likely to be most

useful we apply the SA procedure over the full range of

psychosis values.

An R script that implements the method described here

is available on request from the corresponding author.
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Results
Applying the standard case–control association test to the

AD data yielded a P-value of 0.11 for the effect of the APOE

locus on AD. The SA procedure with AAO yielded a

permutation corrected (100000 replicates) empirical P-

value of 0.0082. The minimum P-value (P¼0.0009, not

corrected for multiple testing) was obtained when only

individuals with AAOo73 years and 4 months were

included in the analysis (12 individuals met this criteria).

Older individuals do not improve the significance of the

result because, although including them increases the

sample size, the frequency of the epsilon4 allele in this

older subset is close to the frequency in the control group.

The 95% bootstrap CI for the best cutoff was (70.8–79.3

years).

A graph showing the estimated OR for the increasingly

large subsets of AD patients is shown in Figure 1. At the

left-hand side of the graph, 10 cases are included in the OR

calculation while on the far right-hand side the full set of

cases is included. The error bars show the 95% CI on the

OR; for clarity the upper error bar has been omitted.

Although the CI are wider (sample size is smaller) on the

left-hand side of the graph, due to the increased OR, the

bottom of the 95% CI is above 1.25 for AAO values in the

range (71.0, 76.8).

Applying the standard case–control association test to

the full 592 individual bipolar data set yielded a P-value of

0.34 for the effect of the rs2619538 SNP on bipolar

disorder; this was consistent with the non-significant

result reported by Raybould et al.14 The SA procedure

yielded a permutation corrected (10 000 permutations) P-

value of 0.020 when the cases were added highest to lowest

(most severe psychosis first). The minimum P-value

(p¼ 0.0022) was obtained when only individuals with

dimension score X45 were included in the analysis (195

individuals met this criteria). The 95% CI for the best cutoff

was (23–80), with 50% of bootstrap replicates falling in the

range (43–45).

Discussion
In summary, we have described a method, SA, for the

analysis of case–control data where there is quantitative

trait information available in cases only. SA is a replace-

ment for ad hoc procedures such as arbitrarily choosing a

cutoff for the definition of caseness. The method employs

permutation testing to account for the multiple testing and

also allows the estimation of the best phenotype definition

(trait cutoff) for future studies.

We showed that, in our small proof-of-principle AD

sample, the SA method could demonstrate a significant

association by taking account of the covariate when the

simple analysis was nonsignificant. The best trade-off

between sample size and effect size at the APOE locus

occurred when individuals aged 73.3 years (95% CI 70.8–

79.3) were included in the analysis. In addition to this

sample of 40 AD cases and controls, we had another seven

independent sets of 40 cases/controls available (these were

not used in the main analysis because such large samples

give very small P-values, irrespective of the analysis

method applied). We repeated the SA procedure in each

of these data sets; the minimum P-value occurred at ages

between 73.9 and 79.0. All of these fall within the CI

calculated on the initial set of 40 cases/controls. We stress

that, particularly in small samples, the range of trait values

(in this case age) may not necessarily be truly representa-

tive of the trait values measured in another sample. For

example, in the case of AD, some data sets only include

individuals with particularly early onset and we would not

expect the best trait cutoff in such studies to necessarily be

the same as the trait cutoff found to be optimal here. With

all eight AD data sets pooled (320 cases and 320 controls),

the best trait cutoff was 76.8 (95% CI 72.7–79.3). We note

here that the AD example was given primarily as a proof-of-

principle and that we chose to discard information on the

age measures for the control individuals. There are survival

analysis techniques that explicitly deal with the situation

where some of the individuals (ie the controls here) have

not reached the age of onset or are censored. Further details

of such techniques are given elsewhere.19

In the bipolar disorder study of dysbindin, the effect size

increased considerably in the subset defined by psychosis.

The psychosis-based SA procedure yielded a significant P-

value (0.02) for the overall association of dysbindin with

the SNP rs2619538. This result is particularly interesting

given previous results for dysbindin in schizophrenia;

further discussion of the role of psychosis in psychiatric

disease definition is given elsewhere.5

The success of the SA procedure in other samples will

depend on the relationship between sample size and effect

size. The effect size in a subset of the cases must increaseFigure 1 SA with AD and AAO.

Sequential addition-based association
S Macgregor et al

531

European Journal of Human Genetics



sufficiently compared with the effect size seen in the whole

sample. A simple example will demonstrate that the effect

size in the subset need not be substantially larger than that

seen in the full case set. For example, suppose there are 460

cases and controls with a disease allele frequency of 0.4.

Assuming the causative locus is typed, an OR of 1.3

(multiplicative model) is required for 80% power at the

5% level. Similar power would be achieved if the number of

cases was half that of the original sample, but the effect size

in the new subset was 1.52. Note to calculate this

approximate comparison, we assume that the equivalent

of nine independent tests were carried out to find the best

subset and that hence the 80% power is obtained at the

0.555% level (Bonferroni correcting for nine tests) instead

of the 5% level. To derive this approximate value of 9 for

the ‘equivalent number of independent tests’, we assume a

data set similar to the psychosis data described in the

results section above. This value of 9 follows because the

permutation derived P-value (which corrects for the multi-

ple tests done) is approximately nine times larger (0.020/

0.0022B9) than the minimum asypmptotic P-value (which

does not correct for multiple testing). The actual number of

tests performed for the psychosis data was 60, but because

of the overlap in the tested subsets there was substantial

correlation between tests. With other data sets the multiple

testing penalty will vary depending on the covariate of

interest. Clearly, there are a wide range of possible models

and power will vary depending on the (unknown) genetic

model. The selected subset of cases will vary depending on

the quantitative covariate available and the power of the

SA approach will depend upon the utility of this covariate

in identifying a suitably homogeneous subset. When there

is substantial genetic heterogeneity, we may expect a subset

of the cases to be affected as a result of their genotypes at

loci distinct from the locus under study; these individuals

will be more likely to carry the ‘wild-type’ allele than the

‘disease’ allele at the locus of interest. Useful covariates,

therefore, will be ones that identify these subsets and

hence allow efficient removal of these uninformative

individuals.

An alternative to the SA procedure is to perform the

quantitative trait association analysis in cases only. This

can be applied through the use of programs such as

qtphase20 in the case of haplotypes or through the use of

standard regression procedures in the case of single SNPs. It

is worth noting that this regression-based approach is a test

of whether the association depends upon the trait not of

overall association. The SA procedure can be modified to

perform an analogous test of whether the association

depends on the trait by changing the way in which the

permutation procedure is implemented (ie by permuting

among cases only). However, since the main interest is

commonly an initial test of overall association, here we

have implemented the joint test of association and

quantitative effect (ie permuting the genotypes among

the whole sample). A positive result is hence indicative of

there being a significant association in a subset of cases

defined by the covariate. In itself, this does not indicate

that the association depends upon the covariate within the

resultant subset. If one is interested in a specific test of

whether the association depends upon the trait, then the

relative merits of an SA-based procedure and a procedure

based on linear regression in cases only will depend upon

how the allele frequency in cases changes with increasing

values of the quantitative trait. If there is a roughly linear

relationship between the quantitative trait and the allele

frequency in cases then the regression procedure may be

apt. If there is a relatively sharp cutoff point in the

quantitative trait where the allele frequency changes

dramatically then the SA procedure would be expected to

perform substantially better than the regression procedure.

It is possible to use more flexible regression techniques,

such as fractional polynomials. However, the optimal

choice of model will often be unclear.

In the applications of the SA procedure given here, there

was a prior hypothesis of which end of the quantitative

trait distribution was most relevant to the locus of interest.

For AD, early onset cases were of primary interest and in

bipolar disorder, individuals with high psychosis values

were thought to be most important in defining

the phenotype. However, for other quantitative traits,

there may not be a clear prior hypothesis. In such cases,

we would recommend that individuals are sequentially

added highest first and then lowest first. This means that, if

the optimal subset of cases includes mainly individuals

with only high trait values or only low trait values, these

subsets will be tested. This modification can then be

repeated in the permutations, hence ensuring appropriate

correction for the multiple tests carried out. If more than

one trait is used to help define the phenotype, then an

appropriate correction for multiple testing will also be

necessary.

The SA method can be applied to multiple markers in a

number of ways. Firstly, if a few markers are of interest, a

single global haplotype based test such as that imple-

mented in cocaphase20 can be applied. Alternatively, the

SA approach can be applied to each locus individually. In

this case, the test statistic is calculated for each marker for

each subset. The permutation procedure described in the

Methods section is then applied to obtain the significance

of the highest test statistic from any of the markers

considered. Modifications of this procedure in which a

series of sliding window haplotype tests are applied could

also be utilised.

The SA approach is flexible in that a number of possible

tests of association can be conducted. Possibilities include

allele, genotype and haplotype based tests. The assump-

tions made in each test should be carefully considered. In

the case of allelic tests, randommating is assumed and tests

for deviation from Hardy–Weinberg equilibrium (HWE)
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should be conducted. Such HWE tests would typically be

conducted on the full set of cases and controls (as a screen

for genotyping errors). In addition to such tests, we would

recommend that a separate HWE check is also conducted

in the subset of cases found to be most significant for a

given marker. In the case of haplotypic tests, where

haplotype frequencies must be estimated, investigators

should be aware that the estimated haplotypes may vary

across the different possible subset of the case data. To

ensure that the uncertainty in haplotype frequency

estimation is appropriately taken into account in the test

for association, likelihood based tests, such as that

implemented in programs such as cocaphase20 should be

used. The effect of estimating the haplotype frequency

from varying numbers of individuals will be minimized

because likelihood ratio based tests include an estimate of

haplotype frequencies derived from the full set of cases and

controls (in addition to the frequencies in cases and

controls separately). In contrast, haplotype-based tests that

simply compare the estimated haplotype frequencies in

cases versus controls are inappropriate.

A related method for sequentially adding in families into

linkage analysis (ordered subset analysis or OSA) was

described by Hauser et al.7 OSA subsets the available family

data according to the values for a particular covariate.

Although this leads to analysis results based on only a

subset of the data, the results in Hauser et al and in a

number of subsequent publications (eg BHF Family Heart

Study Research Group21) demonstrate that in many cases,

selecting a genetically homogeneous subset leads to

improved results. The OSA approach shares desirable

properties with the SA approach we describe here. Both

approaches require no a priori specification of the cutoff

required to select a homogeneous subset of the data and

both provide guidance for the selection on individuals/

families for confirmatory studies. We note also here that

the SA procedure described above can be simply modified

for application with trios measured for a suitable quanti-

tative trait.

More generally, the characteristics of maximally selected

statistics have been examined in the literature. A com-

monly examined case is where the classification of

individuals as either case or control is determined by an

underlying quantitative trait. The total number of indivi-

duals in such an analysis is hence fixed. If the classification

is performed so that the test statistic is maximized, this will

yield statistics with nonstandard distributions.22,23 Evalua-

tion of these distributions may then allow evaluation of

significance without the need for simulation. An extension

of this approach to deal with the situation we describe here

(where the number of cases is gradually increased accord-

ing to the quantitative covariate) would be an interesting

area for further study. For nearly all practical purposes, the

simulation-based procedure we describe for establishing

statistical significance would be tractable.

The SA method may be useful in other scenarios. One

further application would include the use of the procedure

with affected sib pairs from linkage studies. If only one sib

is to be used in an association study, then such individuals

may benefit from being sequentially added on the basis of

their (pairwise) identity by descent (IBD) proportion. We

are currently investigating this application of SA further.
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