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Schizophrenia genetics: uncovering positional
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The efforts to decipher the genetic causes of schizophrenia, one of the most devastating mental illnesses,
have reached a turning point. Several linkage findings in schizophrenia have been replicated and, in the
last few years, have been followed by systematic fine-mapping efforts to identify positional susceptibility
genes. Here, we outline the evidence supporting each of the proposed positional candidate genes and
identify some general areas of caution in their interpretation. Several of these findings hold considerable
promise both for understanding the neuropathology of this brain disorder, the causes of which remain a
mystery, but also for development of novel, mechanism-based treatments for the patients.
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Introduction
Schizophrenia is a devastating psychiatric disorder char-

acterized mainly by ‘positive symptoms’ that include

delusions and hallucinations, ‘negative symptoms’ that

include blunted emotions and social isolation, and cogni-

tive deficits that include impairments in executive

function, attention and working memory.1 The disease

onsets usually in late adolescence or early adulthood and

follows an episodic and deteriorative course where the

prognosis becomes worse with each episode.2,3 It is

estimated that 1% of the population may suffer from

schizophrenia worldwide, but the disorder is more pre-

valent in families where schizophrenia has previously been

diagnosed.4 Similar to many common, complex disorders,

schizophrenia is a multifactorial disorder characterized,

to a large extent, by the contribution of multiple

susceptibility genes, which may interact, in a stochastic

manner, with epigenetic processes and environmental

factors.5 Furthermore, it is likely that the disease

presents etiologic heterogeneity, in the sense that different

combinations of these factors could lead to very similar

phenotypic outcomes.

Gene identification is an important milestone for under-

standing the disease pathophysiology. However, it has

proven to be an extraordinarily difficult task because no

single gene is necessary or sufficient to cause the disease

but instead, many susceptibility genes with small effects

act in combinations to increase the risk of illness. In the

past 3 years, significant advances in gene discovery have

taken place fueled by the completion of the sequencing of

the human genome, the readily available technology for

high-throughput genomic analysis, and the generation of

new analytical and bioinformatics tools. Several suscept-

ibility genes have been proposed, each supported by

varying degrees of evidence. Gene discovery ensued

after approximately 20 genomewide scans took place. In

this recently emerged context, a critical reviewer of the

literature should be concerned with issues regarding the

extent of coverage of the implicated loci, consistency of

the risk allele or risk haplotype across studies, the structure

of the samples used in the original and replication studies,

publication bias against negative reports, phenotypic

heterogeneity and supporting biological data. As it is
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becoming increasingly clear that unreliable results may be

obtained when allele frequencies differ notably among

subpopulations not represented equally between cases and

controls,6 the possibility that original or replication studies

using case–control samples are false positives (or nega-

tives) is a major source of concern. This issue is relevant to

all common, complex disorders, but it is likely to be more

pronounced in genetic studies of psychiatric disorders,

which are confounded by a larger degree of phenotypic

heterogeneity. In addition, several of the original or

‘replication’ samples have been used repeatedly in genetic

association studies making the issue of multiple testing

corrections highly relevant. These are not merely theore-

tical considerations as they can lead to striking incon-

sistencies among variant alleles and haplotypes implicated

in various replication studies. Publication bias almost

certainly affects the level of confidence ascribed to any

given susceptibility gene. For example, negative studies are

less likely to be submitted for publication and when they

are submitted they are less likely to be published in the

same journals where the original discovery was reported.

As an end result, negative studies are more likely to

accumulate with considerable delay or not at all. As

alluded to above, phenotypic heterogeneity can also

contribute to the uncertainties and inconsistencies asso-

ciated with genetic research in schizophrenia. Phenotypic

heterogeneity is to be expected due to the complexity of

the affected organ (the brain), but the majority of genetic

studies by relying on a categorical binary diagnosis

(‘affected’ vs ‘unaffected’) do not take into account the

possible differences in representation among different

samples of the various components of the illness. There-

fore, claims that ‘gene X has been replicated in eight out

of 10 studies’ should be taken with a grain of salt and a

more careful analysis of the properties of the employed

samples and the methods used is necessary to determine

the validity of such claims.

The recent gene discovery studies promise to provide

researchers with important clues regarding the genetic

causes of schizophrenia. In the absence of a ‘smoking gun’

for most candidate genes, that is a well-defined and

fully penetrant mutation of the kind found in Mendelian

disorders, it is important to balance human genetic and

hard biological evidence against the need for timely

identification of targets and improvements in therapy.

Biological data can be obtained by genetic studies of

endophenotypes, provided they are designed to avoid all

the pitfalls described above (such as population stratifica-

tion), which are associated with genetic studies of the

clinical syndrome. Most importantly, in our opinion,

biological insights can be provided by generation of

reliable animal models. Identification of susceptibility

genes will permit the design of much more incisive studies

to illuminate the physiological and biochemical etiology of

the disease by examining the gene products in the context

of a model organism and their impact on the development

of the disorder.

Candidate genes through positional cloning
In this review, we discuss the genetic data for recently

emerged strong positional candidate genes that were

identified through systematic follow-up of linkage signals

(in chronological order of appearance of the reports), their

possible function(s), as well as biological data accumulat-

ing from relevant animal models, when applicable. With

one exception for the gene for catechol-O-methyltrans-

ferase (COMT), space constraints do not allow us to discuss

available genetic data for a set of candidate genes (such as

PPP3CC or RGS4), located in the general vicinity of linkage

signals and identified through convergent genetic and

biological evidence, rather than systematic positional

cloning approaches. Indeed, the location of these genes

begs the question whether the recurrent observation of

clustering of candidate susceptibility genes may indicate

that more than one gene may contribute to at least some

of the linkage signals observed in psychiatric disorders.

Finally, due to space limitations, other genes that could be

good candidates (such as DRD3, CHRNA2, BDNF, GAD2,

AKT1), but do not strictly conform to the criteria outlined

above, are also not discussed here.

In 2002, four strong candidate schizophrenia suscep-

tibility genes were identified through systematic positional

cloning efforts7 in regions of linkage. The genes were:

PRODH (proline dehydrogenase, chromosome 22q11),

DTNBP1 (dystrobrevin-binding protein 1, or dysbindin,

chromosome 6p), NRG1 (neuregulin 1, chromosome 8p)

and G72 (chromosome 13q).8 –11 More recently, additional

candidate genes have been identified by linkage dis-

equilibrium (LD) mapping methods using single

nucleotide polymorphisms (SNPs) in previously identified

linkage peaks.

Proline dehydrogenase

PRODH encodes an enzyme that metabolizes L-proline, a

putative neuromodulatory amino acid that may directly

influence glutamatergic transmission,12 which is believed

to play a central role in the pathophysiology of schizo-

phrenia. The gene maps to chromosome 22q11. An

unequivocal association between hemizygous deletions of

the 22q11 locus and schizophrenia has been established. In

light of positive linkage findings at the same locus,

individual genes from this locus have been examined in

systematic fine-mapping efforts.13 LD analysis using 72

SNPs in family samples identified an overtransmission

of a haplotypic variant located at the 30 end of the

PRODH gene.8,14 This finding was recently replicated in

two independent family samples, including a very large

collection of 528 families from China15 and 274 families of

Ashkenazi Jewish origin,16 although one negative family
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study has also been reported.17 Moreover, 30 end variants of

the gene were also identified as a risk factor for develop-

ment of psychotic symptoms during adolescence in

children with 22q11 microdeletions.18 The functional

consequences of the implicated haplotypic variants, which

are consistently located at the 30 end of the gene, are still

unknown. However, the Liu et al8 study identified

additional rare variants of the PRODH gene, which affect

highly conserved amino acids. These variants are present

either exclusively or in higher frequencies in schizophrenic

patients and are generated through gene conversion from

a nearby pseudogene.8 Several of these variants lead to

drastic reductions in enzymatic activity.19 The same

variants were described in schizophrenic patients in an

independent study, which also identified a small deletion

encompassing the PRODH gene in a schizophrenic

patient.20 In addition to being one of the most variable

genes in the human genome, the PRODH gene is haploin-

sufficient: heterozygous deletions of PRODH and the

presence of heterozygous mutations of the PRODH

gene are associated with moderate hyperprolinemia

(300–600mmol/l).20,21 As a result of the hemizygous

nature of the 22q11 microdeletions, haploinsufficiency

(gene dosage-dependence) is likely to be an important

property of any gene that modulates the emergence of the

22q11 psychiatric phenotypes, as it was the case for Tbx1, a

gene that modulates in a dosage-dependent manner the

cardiac features associated with these microdeletions.22 A

mutation in the mouse ortholog of the human PRODH

gene in the Pro/Re hyperprolinemic mouse strain has been

described.23 These mice demonstrate an increased neuro-

transmitter release and abnormal plasticity at glutamater-

gic synapses, as well as distinct abnormalities in dopamine

turnover and signaling in the frontal cortex.24 Cortical

dopaminergic dyseregulation is accompanied by local

increase in transcript and protein levels of the Comt gene

(also located within the 22q11 microdeletion locus, see

below) that is likely to represent a homeostatic response.

Thus, these animal model studies strongly suggest that,

within the context of the 22q11-associated schizophrenia,

PRODH deficiency likely acts as a primary deficit whose

effects are buffered by COMT activity and provide a

framework for understanding the genetic architecture of

the schizophrenia risk.

Dystrobrevin-binding protein 1, or dysbindin

Fine-mapping efforts undertaken as a follow-up to evi-

dence for linkage on chromosome 6p24–22 in a sample of

Irish families, led to identification of an association with

schizophrenia of genetic variants in the DTNBP1 gene

(dysbindin).9 Most replication samples used (N¼9) were

case–control samples.25–29 Replication of this association

has also been attempted in seven family samples, with

replications observed in five of them.16,30 –33 In the

positive studies there are inconsistencies among the

implicated alleles or haplotypes. If these inconsistencies

are not a product of population stratification or multiple

testing, they could be explained by the presence of distinct

variations affecting different functional elements within

the gene that have emerged independently on a more

recent ancestral background. Alternatively, the signal may

be due to variants in a neighboring gene or genes in LD

with DTNBP1 variants. Recently, functional significance

has been ascribed to some of the implicated alleles or

haplotypes.34 DTNBP1 is a member of the biogenesis of

lysosome-related organelles complex (BLOC), as well as the

dystrophin protein complex (DPC).35,36 The protein is

ubiquitously expressed in the brain. Two recent studies

showed a decrease of DTNBP1 mRNA in dorsolateral

prefrontal cortex (DLPFC) and hippocampus of schizo-

phrenic patients when compared to controls.37,38 Preli-

minary in vitro evidence suggests that knockdown of

endogenous dysbindin protein results in the reduction of

presynaptic protein expression and glutamate release,

suggesting that dysbindin might influence exocytotic

glutamate release.27

Neuregulin 1

A broad region on chromosome 8p12–21 has been

consistently implicated in schizophrenia by multiple

linkage studies, including a study of 33 extended Icelandic

families. Fine-mapping across the genomic region of

maximal linkage in this set of families detected an

association between schizophrenia and several haplotypes

at the NRG1 locus. A core haplotype at the 50 end of the

gene comprising several markers within a 290-kb block of

LD showed highly significant association with schizophre-

nia.10 While several replication studies have taken place it

is still unclear which variants or haplotypes are involved.

Eight of the replication samples used were case–control

samples.39–46 In addition, 8 family samples were also used

for replication. In these, less than half show some evidence

for association, but with haplotypes other than the one

originally described.16,33,44 –49 Of concern are some dra-

matic differences in the frequency of haplotypes reported

between different samples,45,46 where the frequencies

range from 1 to 10%. This could indicate either substantial

heterogeneity in the LD structure across the NRG1 locus or

the presence of multiple risk alleles. In the absence of any

functional significance for any of the implicated haplo-

types it is difficult to interpret further the genetic data that

is published at the time of this writing. The NRG1 gene is

an attractive candidate as it it encodes a well-characterized

protein involved in a wide variety of neuronal, complex

functions, ranging from neuronal survival to myelination

and synaptic plasticity.50 Several general and conditional

Nrg1 knockout mice have been described,51,52 but it is not

clear if they can be used reliably to model the gene’s

contribution to schizophrenia since the nature of the
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pathogenic contribution of this gene to schizophrenia is

currently unknown.

G72

Another strong linkage signal for both schizophrenia and

bipolar disorder has been identified on chromosome

13q32–34. This linkage signal is one of the most consistent

ones in the literature53,54 and has prompted fine-mapping

efforts. Significant association with schizophrenia was

described for several SNPs and haplotypes at the G72 locus

in a French-Canadian case–control sample, with the

association for two SNPs being replicated in a Russian

case–control cohort.11 Interestingly, an association be-

tween variants at the G72 locus and bipolar disorder has

also been described.55 G72 association with schizophrenia

has been observed in several additional samples (some

case–control56–58 and some family-based samples59,60)

with evidence for allelic heterogeneity. Negative studies

have also been reported.61 Enzymatic studies suggested a

potential interaction with D-amino-acid oxidase (DAAO)

that modulates its enzymatic activity and thus could

indirectly affect glutamatergic signaling.11,62 The notion

that G72 acts via modulation of DAAO activity has

acquired momentum in the field, but there is no direct

in vivo demonstration of such effect.

Disrupted in schizophrenia 1

Disrupted in schizophrenia 1 (DISC1) is one of two genes

isolated from a chromosome 1q42 translocation break-

point previously described to segregate with psychopatho-

logy in a large Scottish family. The other gene is DISC2

and is a noncoding, presumably regulatory RNA.63 Alternative

hypotheses about involvement of the reciprocal transloca-

tion breakpoint on chromosome 11 have been proposed.64

Although DISC1 was originally described 5 years ago,

interest in it was renewed only recently when large-scale

linkage65,66 and follow-up systematic association studies

in families from Finland identified DISC1 as a positional

candidate from the 1q42 locus.67 DISC1 association with

schizophrenia has been observed in some additional

samples with evidence for allelic heterogeneity,

although negative studies have also been reported.16,67,68

Interestingly, a family afflicted with schizophrenia and

schizoaffective disorder was recently shown to segregate a

rare frameshift variant of the gene.69 In one recent

preliminary imaging study variation in the DISC1 gene

was associated with altered hippocampal structure and

function in healthy subjects,70 whereas an independent

study implicated DISC1 variation in visual working

memory performance.71 DISC1 is a complex gene with

poorly understood involvement in development and

plasticity. It is associated with numerous cytoskeletal

proteins, and it may be involved in a variety of cellular

functions, including centrosomal and microtubule

function, cell migration, neurite outgrowth, membrane

trafficking of receptors, mitochondrial function and phos-

phodiesterase signaling.72

Carboxyl-terminal PDZ ligand of neuronal nitric
oxide synthase

Brzustowicz et al73 have previously reported evidence for

linkage at 1q22. Using 14 microsatellite markers and 15

SNPs from a subregion of the linkage locus74 produced

nominally significant evidence of LD between schizo-

phrenia and a subset of markers located within the

genomic region of carboxyl-terminal PDZ ligand of

neuronal nitric oxide synthase (CAPON), making it a prime

positional candidate from the schizophrenia susceptibility

locus on 1q22. An abnormal expression pattern of this

gene was observed in brains from individuals with schizo-

phrenia or bipolar disorder.75 Two case–control replication

studies (one positive and one negative) have been

reported.76,77 CAPON is involved in NMDA receptor-

coupled nitric oxide signaling.78

ZDHHC8

This gene was identified in the same LD screen of the

22q11 locus that identified the association between the

PRODH gene and schizophrenia.8,14 Five SNPs from an

80-kb LD block were significantly associated with schizo-

phrenia. The most significantly associated SNP, rs175174,

maps in intron 4 of the ZDHHC8 gene and was shown to

affect the ratio of an intron 4-containing unspliced form

(that encodes a putative truncated form of the protein)

over the fully spliced form by B25–30%.79 This small

change in the levels of the active protein was associated

with B1.5-fold increase in the disease risk in two tested

family samples of patients not carrying the 22q11 dele-

tion.14,79 It is, of course, possible that other variants of the

gene (affecting distinct aspects of its complex splicing or its

expression level) might modulate the disease risk in other

patient samples. One positive and one negative family-

based study have been reported so far.80,81 Although the

general involvement of this gene in schizophrenia awaits

analysis of additional family samples, the effect of the gene

is predicted to be much stronger in individuals with 22q11

deletions and schizophrenia, where a 50% (or B65% when

the nondeleted allele carries the risk SNP rs175174 variant)

decrease in ZDHHC8 activity levels is predicted. ZDHHC8 is

predicted to encode a transmembrane palmitoyltransferase

that modifies PSD-95 among other targets (Mukai J, Dhilla

A, MK, and JAG, unpublished) and could play an important

role in excitatory synaptic transmission.82

Trace amine receptor 4

A broad area on chromosome 6q (6q13–q26) has also been

implicated in schizophrenia in linkage studies using

European-ancestry and African American schizophrenia

pedigrees.83 Fine-mapping efforts focusing on band q23.2

using 31 SNPs and a follow-up higher density screen using

Schizophrenia genetics
M Karayiorgou and JA Gogos

515

European Journal of Human Genetics



23 SNPs over a 21.6-kb region identified trace amine

receptor 4 (TAAR6) as a prime positional candidate84

for the schizophrenia susceptibility locus on 6q23.2.

Two negative replication studies have been reported.85,86

However, an independent study implicated the trace

amine receptor genes at 6q23.2 in susceptibility to

bipolar disorder.87 TAAR6 is a GPCR widely expressed

in the brain.88

Epsin 4

Chromosome 5q33 is a region that has previously shown

strong evidence of linkage to schizophrenia, with four LOD

scores 43.0 in independent linkage studies. Four adjacent

markers (and associated haplotypes) at the 50 end of the

Epsin 4 gene, which is located in this region, showed

significant evidence of LD with schizophrenia in a fine-

mapping study that employed 450 unrelated English, Irish,

Welsh, and Scottish research subjects with schizophrenia

and 450 ancestrally matched supernormal controls.89 The

Epsin 4 gene encodes the clathrin-associated protein

enthoprotin, which has a role in transport and stability

of neurotransmitter vesicles at the synapses and within

neurons. No replication studies have been reported yet.

Gamma-aminobutyric acid receptor subunit gene
cluster

Chromosome 5q31–q35 was implicated in Portuguese

schizophrenia families90 and was supported by subsequent

meta-analysis. A group of gamma-aminobutyric acid

(GABA)A receptor subunit genes (GABRA1, GABRA6,

GABRB2, GABRG2 and GABRP) that map within this

linkage peak were investigated in Portuguese patients

and associations with SNPs and haplotypes in GABRA1,

GABRP and GABRA6 were detected.91 The GABRA1 and

GABRP findings were replicated in an independent

German family-based sample.91 These genes are plausible

candidates based on prior evidence for GABA system

involvement in schizophrenia.92

Catechol-O-methyltransferase

The gene is located in the 22q11 region between the

PRODH and ZDHHC8 genes (see previous section on

positional candidate genes). COMT is also an attractive

functional candidate gene since it is involved in the

breakdown of dopamine. Several studies testing directly

for association between variants from this gene and

schizophrenia have taken place. One variant in particular,

in codon 158 that affects enzymatic activity depending on

the presence of Val (high activity) or Met (low activity), has

been studied extensively. It has been proposed that the

high activity Val allele increases the risk for schizophrenia,

but the genetic association results are equivocal.93–99 The

same allele was shown in some studies to impair executive

function, which is affected in schizophrenic patients.100,101

More recent studies in animal models, however, suggested

that low activity of this enzyme could be a risk factor for

schizophrenia by failing to buffer the effect of other

primary mutations that affect dopamine turnover and

signaling in the cortex.24 This prediction was supported by

the results of a longitudinal follow-up study of children

with 22q11 microdeletions, which revealed that the low-

activity form of the enzyme (Met158) is a risk factor for

decline in prefrontal cortical volume and cognition, as well

as for the consequent development of psychotic symptoms

during adolescence, in these children.18 Overall, a poten-

tial contribution of COMT to schizophrenia in general, is

likely to be complex.

Future directions
Two recent meta-analyses102,103 implicated (under moder-

ate stringency) approximately 12 regions of the genome as

likely to contain schizophrenia susceptibility genes (2p, 5q,

3p, 11q, 2q, 1q, 22q, 8p, 6p, 20p, 13q and 14q). This is

most likely to be an underestimate. Nevertheless, even if

we take the meta-analytic studies at face value, and assume

that the already isolated positional candidates can solely

account for the local linkage signals (a property that has

not been demonstrated for any of them) there are still

several ‘orphan’ linkage loci that await the identification of

positional candidate genes. This task will be facilitated by

the sequencing of the human genome and the identifica-

tion of SNPs and their LD patterns over virtually all

segments of the human genome.104 It is the ultimate hope

that the identification and in vivo characterization of

schizophrenia susceptibility genes will lead to the discovery

of novel, improved mechanism-based therapies that target

susceptibility genes or affected molecular pathways.
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