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The application of genome-wide linkage scans to uncover susceptibility loci for complex diseases offers
great promise for the risk assessment, treatment, and understanding of these diseases. However, for most
published studies, linkage signals are typically modest and vary considerably from one study to another.
The multicenter Family Blood Pressure Program has analyzed genome-wide linkage scans of over 12 000
individuals. Based on this experience, we developed a protocol for large linkage studies that reduces two
sources of data error: pedigree structure and marker genotyping errors. We then used the linkage signals,
before and after data cleaning, to illustrate the impact of missing and erroneous data. A comprehensive
error-checking protocol is an important part of complex disease linkage studies and enhances gene
mapping. The lack of significant and reproducible linkage findings across studies is, in part, due to data
quality.
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Introduction
Whole genome linkage scans have been enormously

successful for the identification of monogenic and some

oligogenic disorders. Applying the same approach to locate

major genes for complex human diseases has, unfortu-

nately, been much less rewarding. A review of 101 studies

of complex human diseases revealed that few consistent

and significant linkage results have been obtained, and

even fewer novel susceptibility genes have been identi-

fied.1 The failure to detect linkage or to reproduce previous

linkage findings has been attributed to inadequate sample

size, phenotypic misclassification, genotyping errors, and

the standard hallmarks of complex diseases such as low

effect sizes of variant alleles (ie, low locus-specific herit-

ability), phenocopies, and genetic heterogeneity. Data

quality is at least as important as the study design and

the methods of analysis, particularly since this is under the
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investigator’s control. While there is extensive literature

on how data quality impacts linkage study results, few

recommendations exist on the logical sequence in how to

detect, correct, and remove erroneous data in preparation

for analysis. In this report, we present our protocol for

cleaning genotyping and pedigree errors based on our

experience with the large multicenter NHLBI Family Blood

Pressure Program (FBPP).2 Using specific examples from

one of the FBPP network, GenNet, we also discuss the

impact of erroneous data on linkage results.

When mapping monogenic diseases, the location of the

disease-causing locus is often defined by a few individuals

with recombinations near the disease locus. The pheno-

types and genotypes at relevant markers of these indivi-

duals are confirmed and repeated before one starts

searching for candidate genes. Finding genes underlying

complex diseases necessitate a much larger sample size to

distinguish a linkage signal from random noise. Moreover,

late age of onset and mortality in these diseases make

collecting large pedigrees a real challenge if not an

impossibility. As the evidence of linkage and the locations

of the susceptibility loci are based on a large number of

small families, it is both costly and impractical to repeat

the phenotyping and genotyping protocols. A comprehen-

sive error checking protocol to ensure data accuracy is

therefore an important part of complex disease linkage

studies.

Generally speaking, four types of errors are common to

all family-based genetic studies: errors in phenotypes,

pedigree structure, marker information, and marker geno-

types. All four can potentially reduce linkage signal and

provide misleading information on the linkage region.

Since the characteristics of phenotype data vary from one

study to another, addressing phenotypic data quality issues

usually requires customized protocols for each study.

Marker-related errors, such as marker order and recombi-

nation distance, have been discussed elsewhere and are not

considered here because the human genome sequence and

maps of increasing resolution have reduced this category

of errors.3,4 Pedigree structure errors, that is, discrepancies

between reported relationships and actual biological

relationships, are mostly due to erroneous information

reported by study participants. Sample switching and data

entry errors can also give the appearance of pedigree

structure errors. Genotyping errors are associated both

with nonrandom errors at specific markers and a low rate

of random errors at all markers. Given a true pedigree

structure, genotyping error can be identified by incon-

sistencies in Mendelian transmission of alleles but only in

informative families. Conversely, when a sufficiently large

number of markers are genotyped, relationships among

members of the same family can be inferred based on allele

sharing. This reciprocal error-checking process is especially

effective in large pedigrees examined for a large number of

highly polymorphic markers. For complex diseases, the

pedigree size is usually small and hence has less power to

detect genotyping errors. The large number of markers

genotyped for a typical 10 cM linkage scan (B400),

however, is more than sufficient to infer the pair-wise

relationships among all members within and between

families.

Materials and methods
The family blood pressure program

The Family Blood Pressure Program (FBPP)2 was established

by the NHLBI in 1995 to identify genes underlying blood

pressure (BP) regulation and hypertension. It consists of

four collaborating multicenter networks: GenNet, GENOA,

HyperGEN and SAPPHIRe. The four Networks pursued

different study designs and protocols with multiple ethnic

groups including Caucasian Americans, African Americans,

Hispanic Americans, and Asians. Over 120 common

phenotypic measurements were collected in each Network

so that phenotypic and genotypic data can be pooled

across Networks for maximum statistical power. During the

first 5 years (1995–2000), the project has enrolled a total of

13 592 individuals.

Genotyping

Genome-wide scans using short tandem repeat (STR)

markers were carried out by the NHLBI Mammalian

Genotyping Service, using a mixture of di-, tri, and

tetranucleotide repeat markers. To date, a total of 12041

individuals have been genotyped. As a reslut of the

enormous size of the FBPP, genotyping was performed in

several batches spread over several years, using slightly

variable marker sets. Some STR markers were intrinsically

more difficult to genotype accurately and were phased out

in later sets of markers. Thus, the number of markers

genotyped varied somewhat over the batches. For example,

in GenNet, there were from 365 to 396 markers per batch. A

total of 352 markers were genotyped in all seven batches

and 54 markers were genotyped in one or a few batches

only. An average of 310 samples was genotyped in each

batch and heterozygosities ranged from 0.76–0.79. All

analyses were carried out using theMarshfield genetic map.5

Data cleaning protocol

Our data cleaning protocol consists of three steps. Step 1:

identification and removal of error-prone markers. When

STR genotyping of a dataset is performed in multiple

batches over several years, identical alleles are sometimes

called differently because different flanking primers, allele

sizing software, or allele binning methods have been

used.6 Examples of this phenomenon, that we term ‘allele

shifting’ or AS, are demonstrated in Figure 1. For marker A,

between the first and the last 2 batches, the size of all

alleles have been altered by 38 nucleotides by using

different primers to amplify the sequence containing the
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STR. For Marker B, only those alleles sized smaller than

154 base pairs showed evidence of AS, due to the use of

a different binning method or size standard. Step 2:

identification and correction of errors in family structure.

Once the genotypes affected by AS were deleted, family

structure errors due to misreporting or sample switching

are corrected based on allele sharing statistics of pairwise

relationships within and between pedigrees. Step 3:

identification and deletion of random genotype errors.

Finally, using confirmed or corrected family structure,

genotyping errors that are Mendelian-inconsistent can be

identified and removed. Details of our data cleaning

protocol are presented in online Supplementary Informa-

tion.

Genome-wide linkage analysis

Variance components linkage analysis (GENEHUNTER,7

version 2.1) was applied to the GenNet data using three

blood pressure (BP)-related phenotypes: systolic blood

pressure (SBP), diastolic blood pressure (DBP), and pulse

pressure (PP) and body mass index (BMI). Details of the

GenNet study population and linkage results are published

elsewhere.8 When comparing our linkage results to 28

other published genome-wide linkage studies of hyperten-

sion-related traits, we used stringent criterion in deciding

what constituted a replication: we compared only linkage

results with maximum lod scores (LODs) greater than 2 and

considered a linkage region validated when the markers

closest to the LOD were identical in both studies. If

different marker panels were used, replication was accepted

only if the physical locations (based on NCBI Build 34) of

the markers closest to the LOD in both studies are within

the one-lod interval defined in each paper.

Results
Summary of the QC results for the entire FBPP

At the end of the data cleaning process, data loss for each

Network could be classified into four categories (Table 1)

based on how many genotypes there were at each stage of

data cleaning relative to the total number of expected

genotypes based on the numbers of samples and markers

genotyped. Overall, data loss ranges from 7.1 to 9.3%

among the four Networks. In addition, a total of 59 full

sibling pairs were recovered in the entire FBPP based on the

inter-pedigree relationships found by the GRR.

Five markers were found to have clear evidence of AS in

all four networks (Supplementary Tables 1 and 2), and FBPP

investigators opted to delete all genotypes of these five
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Figure 1 Examples of allele shifting (AS) markers. Gray¼Batch 1,
Black¼Batch 2, White¼Batch 3. Marker A: GATA3H06, and Marker
B¼GATA71E08.

Table 1 Source of missing data from each individual network’s cleaning process

GenNet (%) GENOA (%) HyperGEN (%) SAPPHIRe (%)

Genotyping failure 3.5 3.9 4.3 3.2
Inconsistent allele calling 2.4 1.7 1.4 0.8
Family structure 2.8 0.03 1.2 1.1
Genotyping error 0.6 0.5 0.7 4.0

Total 9.3 7.1 7.6 9.1
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markers in the entire networks. In doing so, we essentially

created gaps in the linkage map and increased the inter-

marker distances from an average of 8.1 cM (no markers

deleted) to 16.2 cM in five chromosomal regions. In

addition, other markers were found to be problematic in

some, but not all, networks. Two procedures were adopted.

First, only those genotypes that contained inconsistently

called alleles in the specific batch or ethnic group were

deleted. This procedure made the data consistent within

each network across all batches of genotype data. Second,

all genotypes in all AS markers were deleted so that data

from all Networks can pooled for further analysis.

Data cleaning and linkage study: the GenNet
experience

From 1995 to 2000, GenNet has analyzed data from a total

of 1921 subjects from 603 families that are either

Caucasian Americans individuals from Tecumseh, MI, or

African Americans from Maywood, IL. The subjects were

recruited in nuclear families, which have an average of 3.2

subjects per family. During the data cleaning process,

genotypes of 10 markers were deleted because of AS. In

addition, 10 families were excluded from linkage analysis

because a clear genetic relationship could not be

established.

How much of the genome is covered by a 10 cM
linkage scan?

If all markers were successfully and correctly genotyped,

and were fully informative, then the average intermarker

distance in our study would be 9.3 cM and only 0.5% of the

genome would be flanked by markers o20 cM apart. As a

reslut of o100% marker heterozygosity, genotyping fail-

ure, and data deletion in the cleaning step, the distance

between informative markers is, as expected, much greater.

Postcleaning, the actual distance between two informative

(heterozygous) markers is 12.5 cM with 413.5% of the

genome flanked by informative markers 420 cM apart

(Figure 2). Thus, in a typical genome-wide linkage scan, a

significant portion of the genome remains unexamined in

various samples. When such segments are concentrated in

a particular genomic region, then the power of detecting

linkage in this region is compromised.

Does data cleaning improve the likelihood of finding
true linkage?

Postcleaning, 11 chromosomal regions had maximum lod

scores (LODs) 42 with BP-related phenotypes (1q25, 2q33,

10p14, 10q21, 14q13, 14q32, 15q12, and 17q21), and BMI

(3p25, 3q26, and 3q28). Overall, there are remarkable

similarities between our linkage results after data cleaning

and other independent linkage scans of similar traits. For

example, six out of the eight BP-related linkage regions

were confirmed by other independent genome-scan link-

age studies and four regions are also validated by BP-related

QTLs identified in mouse and rat models of hypertension

(manuscript submitted). As linkage evidences in these

replicated regions are more likely to be true positives, we

use them to illustrate the impact of hidden (Mendelian-

consistent) errors on linkage results.

Do allele shifting markers affect linkage evidence?

Linkage signals including and excluding AS markers were

compared to see how erroneous information from such

markers effect linkage results. Chromosomes 1, 14 and 17

all demonstrated linkage (LOD Z2) to BP-related pheno-

types in our data and at least one other study9–12 and have

at least one AS marker. The location of the LOD and AS

markers, the distance between them, and the linkage

analysis results including and excluding the AS markers,

are summarized in Table 2.

For chromosome 1 and 17, including AS markers caused

no or minor reduction in LODs and no change in their

locations (Table 2). On chromosome 14, there are two

regions with evidence of linkage to PP: LOD¼2.5 at 41 cM

and LOD¼3.0 at 106 cM, based on Tecumseh and May-

wood samples combined. Marker Mfd190 (D14S53,

86.4 cM) had allele-shifting problem in both samples.

Deleting this marker created a gap of 10.8 cM on chromo-

some 14. Inclusion of Mfd190 caused a global change of

lod scores reducing the peak at 41 cM from 2.5 to 1.3 and

the second peak at 106 cM from 3.1 to 2.3 (Figure 3). In

contrast, excluding data from non-AS markers (chromo-

somes 1, 14 and 17: N¼ 55) led to a localized change

without effecting lod scores elsewhere on the chromosome

(data not shown). Therefore some, but not all, AS markers

can quantitatively alter linkage outcome. The extent of AS,

distance to the linkage region, and the percentage of the

sample affected, all contribute to the effect an AS marker

can have on the lod scores for the entire chromosome.
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Do family structure errors significantly reduce linkage
signal?

Most of the family structure corrections were performed

for Maywood samples, which, postcleaning, had evidence

of linkage to BMI on chromosome 3. There were three

replicated linkage peaks on chromosome 3: LOD¼2.1 at

30.4 cM; LOD¼1.3 at 191 cM (LOD¼2.1 at the same

position when Maywood and Tecumseh samples were

combined); and LOD¼2.2 at 212 cM.13,14 Using the raw

family structure file reduced the lod scores of all three

regions (no LOD 41.5, Figure 4). Since pedigrees with

family structure errors typically have non-Mendelian

segregation of alleles at many markers, these pedigrees

are deleted by most linkage analysis programs before

calculating lod scores. However, by removing all genotypes

involved in non-Mendelian allele transmission, the in-

correct family structures still reduced lod scores of all three

linkage peaks.

Is removal of Mendelian inconsistencies an adequate
substitution for comprehensive data cleaning?

Two examples of linkage analysis (on BMI and PP

phenotypes) before and after data cleaning are shown in

Figure 5. For the precleaned data, the GENEHUNTER

linkage program automatically deleted entire families at

each marker where non-Mendelian transmission of alleles

was detected. Examples of falsely elevated lod scores from

incorrect estimation of IBS due to undetected errors are

found on chromosome 8 and 9 (phenotype¼BMI,

Figure 5a). Importantly, the linkage signal on chromo-

somes 2 and 14, regions where linkage to BP-related

phenotypes have been reported,11,15 became more signifi-

cant once detectable errors are either removed or corrected

(Figure 5b).

Discussion
We reviewed 74 published genome-wide linkage scans of

complex traits (hypertension, diabetes, obesity-related

phenotypes and psychiatric disorders) published between

1994 and 2004 to assess to what extent data quality is

routinely addressed. A significant proportion of these
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Figure 3 Chromosome 14 lod scores (Tecumseh and Loyola
samples combined, phenotype¼ PP) including and excluding marker
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from Maywood that have the most family structure errors identified.
Raw¼ lod score using the original family structure; Corrected¼ family
structure based on allele sharing of 4300 autosomal microsatellite
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Table 2 The effect of AS markers on chromosome 1, 14 and 17

Maximum Lod Score (LOD)

Chr.
Location of
LOD (cM)

Distance between
AS markers and LOD (cM)

Amount of data
with evidence of AS

Excluding
AS marker

Including
AS marker

Excluding any
other markera

1 182 51 All 3.3 3.2 3.0–3.4
14 41 45 All 2.5 1.3 2.2–2.9

106 20 All 3.0 2.3 2.9–3.1
17 67 10 Partial 2.2 2.0 1.9–2.6

Maximum lod scores (LOD) decreased if AS markers were included in the analysis but the location of LOD did not change.
aThe range of LODs when one non-AS marker is removed from analysis, excluding the marker at the location of LOD. Partial¼When the linkage
evidence came from Tecumseh and Maywood samples combined but evidence AS was detected in one sample set only.
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publications did not mention data quality (39%). When it

was mentioned, 40% relied solely to the occurrence of

Mendelian inconsistency or double recombination be-

tween closely linked markers to identify genotyping errors

and 60% did not validate the biological relationships

among the samples analyzed. Importantly, not a single

publication discussed post cleaning data completeness and

to what extend it impacted on their linkage results. Data

cleaning should be a critical part of linkage analysis,

however, it is clear from the literature that this important

issue is not routinely addressed.

The actual effect of data cleaning is difficult to assess

because most linkage analysis programs do not run in the

presence of inheritance errors. By using only genotypes

that were consistent with Mendelian inheritance, we

demonstrated that both AS markers and erroneous family

structure can significantly reduce lod scores and alter

linkage outcome. Often, in an attempt to confirm a linkage

finding, more samples are genotyped, only to find that the

LOD score from the combined data is less significant than

the original. While there is no doubt that a significant LOD

score from the original study is in part due to sampling

variation, lower lod scores due to inconsistencies in allele

calling should be considered before a linkage result is

abandoned.

The problem of relationship error on genetic inference

has been extensively studied and algorithms to determine

the most likely relationships within a small family, such

as parent–child, full siblings, and half siblings, are well

established.16–19 Recently, a pedigree error detection

method that extends the IBS-based test and the likelihood

calculation to general outbred relative pairs, including

avuncular and first-cousin relationships, has been devel-

oped20,21 and is ideal for studies that utilize large extended

pedigrees.

It is well known that the accuracy of phenotypes also

dramatically affects the power and the outcome of both

linkage and association studies.22,23 Ideally, estimated

phenotype error rate can be derived from repeat sampling

and should be modeled into power calculations and sample

size estimations. For quantitative phenotypes, multiple

measurements also improve power of detecting linkage

by reducing phenotypic variance. In our experience, the

average of multiple BP measurements gave more signifi-

cant linkage results in confirmed linkage regions than

individual measurements. Similarly, linkage analysis using

BP from a more accurate and reproducible method gave a

more significant linkage result than a less reliable method

(data not shown).

Detection of genotyping errors in genetic studies de-

pends greatly on study design (large pedigree, sib-pair and

case/control) and marker heterozygosity. In all cases, even

modest genotyping errors (1–2%) can significantly reduce

the significance of a linkage or association result.24 –28

When family members are available, errors most likely to

contribute to false recombination can be identified and

removed to restore most of the lost linkage information.

Theoretically, only 51–77% of the error can be detected for

multiallelic markers such as STR, and these rates are even

lower for biallelic markers such as SNPs.29 Most error-

detecting algorithms identify only errors that lead to

blatant inheritance inconsistencies. By using a multipoint

method, Mendelian-consistent genotyping errors most

likely to affect linkage analysis can also be detected.27 Four

Figure 5 Genomewide pre- and postdata cleaning linkage results. (a) Maywood samples, body mass index (BMI). (b) Tecumseh and Maywood
samples combined, PP. Precleaning lod scores are shown in red and postcleaning lod scores in blue.
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such methods (SIBMED, MENDEL, Merlin and SimWalk)

were compared and reviewed recently.30 Regardless of

methods, the error-detection threshold should be decided

based on marker density and family size specific to

individual studies, since the default thresholds used by all

four programs have relatively low power. Multipoint

methods are effective only when the marker density is

relative high (1–3 cM) and therefore not applicable to

genome-scan data such as ours.

Potential sources of STR genotyping error have been

described elsewhere.31,32 High throughput genotyping

centers report a current genotyping error rate of o1%.

The Mammalian Genotyping Service (MGS, http://

research.marshfieldclinics.org/genetics/) reports a rate of

0.7% while the Center for Inherited Disease Research

(CIDR, http://www.cidr.jhmi.edu) reports an error rate of

0.14%. As a result of changes in primer design and evolving

technologies in genotyping instruments and allele sizing

software, inconsistent allele calling can occur even when

genotyping is carried out in the same center over time.

Inconsistent allele calling is even more serious if genotyp-

ing data generated by multiple laboratories are combined.

When comparing genome scan data obtained from

CIDR and MGS, most alleles are concordantly called but

18.4% of the markers show some degree of allele calling

discrepancy.33 In our case, we elected to delete all the

genotypes of AS markers. Otherwise, genotypes at proble-

matic loci can be recovered only if there are sufficient

reference alleles from samples genotyped in all batches or

laboratories. While consistent allele calling is important for

linkage studies, it is absolutely crucial for association

studies.

Both STR and SNP genotyping failure and error can

cluster in a small number of markers (from lack of

sufficient sequence uniqueness) and samples (due to poor

DNA quality or contamination). Higher than expected

missing genotypes, Mendelian errors, and deviation from

Hardy–Weinberg equilibrium should alert investigators

to consider deleting all genotypes associated with such

samples or markers. As genotyping technology moves from

STR to SNPs, and study designs from pedigree-based

linkage to population-based association studies, error

detection becomes an even greater challenge. While the

probability of detecting genotype errors of biallelic markers

in unrelated samples is low, this problem is partially

remedied by the fact that large scale SNP genotyping has

a significantly lower error rate than STR genotyping.34 One

area of active research focus on incorporate phenotype and

genotype errors in genetic analysis.35 –40 The extent and

type of phenotype and genotype errors can be estimated by

repeating phenotyping and genotyping in at least a subset

of samples.41 This costly procedure is best done in the

beginning of a study so the expected error rate can be

modeled into power calculation to estimated. Packages

such as Mega2 allow users to introduce genotyping errors

to simulated data to calculate the effects of such error to

both linkage and association studies.42 PAWE-3D calculates

power for association studies using multiple error para-

meters.28,43 Others calculate posterior probability of geno-

typing error in studies based on sibling pair data

(SIBMED27), nuclear families (MENDEL, version 5), and

large pedigrees (SimWalk3)44 so that genotypes with high

probability of error can be removed or corrected by

additional genotyping before analysis. Ideally, both

Mendelian-consistent and -inconsistent error should be

handled automatically (no data deletion/correction re-

quired) and the likelihood calculation of routine genetic

analysis (such haplotype construction, test of linkage or

association) will incorporate the likelihood of the reported

genotypes versus other possible genotypes.

To achieve adequate power, genetic studies of complex

traits often involve thousands of samples collected over

time by multiple groups of investigators. The samples are

usually processed, genotyped, and analyzed by different

groups, potentially introducing heterogeneity and more

error. Improvements in three areas are necessary for genetic

studies of this scale and complexity. First, by simply

increasing marker density in a linkage scan, the inevitable

missing and erroneous genotypes can be identified with

greater ease and will have less effect on the overall linkage

signal. Second, improved genotyping technology can no

doubt reduce genotyping errors and between-batch varia-

tion. Reliable and high-throughput SNP genotyping might

replace STR markers as the choice of genome scans in

the near future. For studies in progress, having all the

genotyping done in one laboratory in the shortest time

possible can also avoid some of the batch-to-batch

variability. Finally, we strongly recommend investing in

study design and infrastructure. Laboratory automation

and centralized data management that minimize human

errors in sample handling, data entry, as well as subsequent

data transfer and storage, are of paramount importance

in the ultimate success of finding genes underlying

complex diseases. It is our hope that the experience

discussed here will be instructive to investigators of similar

studies and encourage some to take another look at their

own data.
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