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Large animal models and gene therapy
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Over the last two decades, gene transfer experiments for the treatment of inherited or acquired diseases
have mainly been performed in mice. While mice provide proof of principle and allow testing of a variety
of therapeutic modalities, mouse models have some limitations, as only short-term experiments can be
performed, their homogenous genetic background is unlike humans, and the knockout models do not
always faithfully represent the human disease. Naturally occurring large animal models of human genetic
diseases have become increasingly important despite the costs and the extensive clinical attention they
require because of their similarities to human patients. Large animals are reasonably outbred, long lived
allowing for longitudinal studies, are more similar in size to a neonate or small child providing an
opportunity to address issues related to scaling up therapy, and many physiological parameters including
the immune system are more similar to those in humans versus those in mice.
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Introduction
Most diseases that are currently viewed as candidates for

gene therapy are caused by mutations resulting in the

absence of a particular protein (eg enzyme deficiencies) or

are the result of dysregulation/failure of controlled cell

growth (ie cancer). The most common current gene

transfer approach to providing tissues with a therapeutic

protein is to administer normal cDNA to express the

missing protein, or in the case of cancer to either provide

‘suicide genes’ or antitumor factors. These approaches

usually involve using a viral vector to transfer the cDNA,

which may either integrate into the chromosomal DNA of

the patient’s cells or may remain episomal, or both. A vast

number of experiments have been performed in mice and

other species to develop clever methods of gene transfer.

However, as has been seen in recent human clinical

trials,1,2 there are important safety concerns, which need

to be addressed. Therefore, gene transfer studies with

statistically and rationally meaningful outcomes need to

be evaluated in models that closely resemble the human

diseases.

Mice have been invaluable for the study of gene transfer

methods and gene therapy of inherited diseases. They are

inexpensive to keep, their generation time is short, and

they have large litters. Today’s transgenic technologies

allow the development of almost any monogenetic disease

model in the mouse and the various mouse strains are

highly inbred, providing uniform conditions in which

experiments can be easily reproduced and statistical

significance achieved.3 However, mouse models may fail

to faithfully mirror the human disease4,5 and longitudinal

studies are not possible because of their short lifespan.

Thus, large animal models of human genetic diseases

complement the murine studies because they have a longer

lifespan, are more similar in size to a neonate or child, their

background genetic heterogeneity is similar to that of

humans, and they are genetically more closely related to

humans than mice.6,7 Scaling up issues can also be

addressed in large animals; there is a 1000-fold size

difference between a mouse and newborn child’s brain

but only 10-fold between a small dog and a neonatal

human. Also, because of their longevity and size, more
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samples from an individual over time can be obtained to

determine long-term efficacy and safety of a given therapy.

Large animal models clearly represent an important step

in the preclinical evaluation of human-directed gene

transfer protocols. Dogs and cats are the most commonly

used species. Some larger species have been used in the past

to better understand genetic diseases, but considerations of

size, housing, and reproduction have limited their use in

treatment protocols. Sheep8,9 and non-human primates10

are often used for the development of gene transfer

techniques, gene marking studies, and assessment of safety,

but despite the existence of genetic diseases in these

species, they have not yet been used for treatment trials.

Other large animal models, such as pigs or horses, are

almost exclusively used to study treatment of induced

diseases, such as cardiovascular disease and arthritis,

respectively. The list of large animal models of human

diseases has become quite long and continues to in-

crease.11 Examples of large animal models used for gene

therapy are highlighted below.

Canine models
The dog is the most widely used experimental large animal

for therapeutic gene transfer studies of naturally occurring

genetic diseases. To date, over 350 genetic diseases have

been described in the dog, many of which are analogous to

human genetic diseases.12,13 Dogs have been invaluable for

the understanding of both disease pathogenesis and a

variety of therapies.12 Over 58% of genetic diseases present

in the dog are true orthologues of human diseases caused

by mutations in the same genes.14 In addition to the

obvious longevity and similarity in size to a small child,

many parts of the canine immune system are much more

similar to those of the human than the murine immune

system.15 The wide diversity of dog breeds and breeding

practices have led to a large number of distinct and isolated

genetic populations. This combined with exponential

advances in canine genetics in recent years has led to the

identification and characterization of numerous canine

genetic disorders, many of which exist in research

colonies.16,17

Mucopolysaccharidosis VII (MPS VII), caused by deficient

activity of beta-glucuronidase (GUSB), was first described

in a child in 1973.18 This lysosomal storage disease has

multisystemic manifestations including organomegaly,

and skeletal, central nervous system (CNS), cardiovascular,

and ocular abnormalities.19 The first animal model of MPS

VII was described from German shepherd dogs in 1984 at

the University of Pennsylvania.20 The murine21 and feline

MPS VII models were subsequently described.22–24 For the

murine, canine, and feline models, the cDNA sequences are

known, and the mutations have been identified.22,25,26

Treatment of lysosomal storage diseases is based on cross-

correction; the ability of the normal enzyme to be taken up

by deficient cells.27

Intravenous delivery of recombinant adeno-associated

virus (rAAV) vectors in MPS VII mice resulted in substantial

correction of disease and included normalization or

significant improvements of body growth, retinal mor-

phology and function, auditory deficits, skeletal abnorm-

alities, and lifespan with stable enzyme activity for at least

1 year post treatment.28

Insights from this experiment led to testing intravenous

retroviral (RV) vectors in neonatal dogs, which showed that

the natural hepatocellular division in the canine neonatal

period was sufficient for significant RV integration.29 This

preliminary step was followed by neonatal, intravenous,

RV gene therapy in dogs and mice with MPS VII, which

yielded impressive clinical and pathological results.30 –33

The series of canine experiments involved treatment of

dogs at days 2–3 of life. These dogs, treated with the canine

cDNA, have had stable serum GUSB activity of between 40

and 6000% of normal for up to the current 5 years.

Important clinical signs of disease, such as cardiac

abnormalities, were absent or minimal.32 There was

marked improvement in the growth of treated dogs, and

the skeletal disease was improved in the limbs.30,31 The

dogs have remained ambulatory to 5 years, versus untreated

affected dogs, which are unable to stand or walk by the age

of 6 months. Corneal clouding has been absent or very

mild in all treated dogs. To date, no offspring, of over 180

evaluated, possess the transgene, and no transgene has

been detected in sperm from the treated males (Haskins,

unpublished data). In addition to the transduction of up to

20% of hepatocytes, preliminary results showed this

treatment to have also transduced hematopoetic stem

cells, as peripheral white blood cells have remained vector-

and GUSB expression-positive for 4.5 years.34 In a pre-

liminary result from MPS VII dogs treated later, at 7 weeks

of age, with and without hepatocyte growth factor, serum

GUSB activity was stable at 14–83% of normal, which was

impressive, but little reduction in clinical disease was seen.

The percent of normal enzyme activity in peripheral white

blood cells containing vector sequence was very low35

compared to the neonatally treated dogs, which may help

explain the apparent superiority of the earlier treatment.

Hemophilia

Hemophilia A and B are X-linked inherited bleeding

disorders caused by a deficiency of the blood clotting

protein factors VIII (FVIII) and IX (FIX), respectively. These

factors are normally synthesized in the liver and secreted

into blood. Current treatment of hemophilia involves

infusions of plasma-derived or recombinant clotting factor

in response to bleeding crises. Hemophilias are particular

attractive disorders for the development of gene-based

therapies as conventional therapy is life long, expensive,

patients remain at risk for emerging blood-borne infectious
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diseases, and therapy is in response to a bleeding crisis, not

to prevent them. Finally, therapeutic control of hemostasis

can be accomplished by supplying a small percentage of

normal factor levels, particularly in Hemophilia A, making

gene transfer-based therapies achievable. The canine

models of hemophilia have been useful for developing

and evaluating gene therapies because the canine proteins

are very well characterized, the genes have been

cloned,3,36–45 and cDNAs are available. Moreover, in

contrast to many diseases, there is no requirement for a

specific target tissue for gene delivery, and the gene

product itself does not require precise regulation of

expression. Hemophilia B is highlighted here as an

example of gene therapy for a bleeding disorder.

Administration of an adenovirus vector with the canine

FIX cDNA via the portal vein directly to the liver produced

plasma FIX concentrations in hemophilia B dogs ranging

from 0 to 300% of the level present in normal dogs.46 This

resulted in amelioration of the disease demonstrated by

normal blood coagulation and hemostatic measurements.

However, as is typical with adenoviral vectors, the activity

then declined due to an immune response.46

The experiments with the most encouraging results were

those using serotype 2 AAV vectors delivered by percuta-

neous injections into skeletal muscle. Five hemophilia B

dogs with a missense mutation were treated with the

canine cDNA and showed stable (417 months) vector

dose-dependent partial correction of the whole blood

clotting time and, at higher doses, of the activated partial

thromboplastin time.47 Treating hemophilia B dogs carry-

ing a null mutation for FIX resulted in the induction of

inhibitory anti-canine FIX antibodies. However, treatment

with a combination of gene transfer and transient immune

modulation resulted in sustained expression (48 months)

at levels sufficient for partial correction of coagulation

parameters.48 The intramuscular approach was shown to be

dose-dependent.49 However, large doses of vector in single

sites produced anti-FIX antibodies.50 A novel alternate

approach used an intravascular isolated limb delivery

technique to achieve extensive transduction of most of

the muscle in the dog limb, resulting in long-term (43

years, with observation ongoing), robust FIX expression

(circulating levels of 4–14% of normal), and essentially

complete correction of the bleeding disorder.51

Intravenous and portal vein administration of AAV

vectors producing transduction of hepatocytes resulted in

up to 14% of normal canine FIX levels, the absence of

inhibitors, and a sustained partial correction of the

coagulation defect.52–55 However, one dog with a null

mutation showed transient expression (4 weeks) and the

development of neutralizing anti-canine FIX inhibitory

antibodies.55 In a third approach, an RV vector was

administered intravenously to three newborn hemophilia

B dogs, resulting in hepatocyte transduction, 12–36% of

normal canine FIX levels, and improved coagulation tests.

Two dogs with null mutations failed to generate antibodies

to canine FIX, demonstrating that neonatal gene transfer

may have induced tolerance.56

Congenital stationary night blindness was first described in

the Briard breed and is characterized by early retinal

degeneration with clinical signs ranging from normal day

vision to complete blindness.57 The disease is orthologous

to Leber congenital amaurosis in humans and is caused by

a 4-bp deletion in the RPE65 gene in dogs58 that truncates

the normal protein, resulting in undetectable levels of the

visual pigment rhodopsin, which is required for normal

vision. Briard dogs with a mutation in RPE65 have early

and severe visual impairment. Histopathological examina-

tion of the retinas of dogs homozygous for the RPE65

mutation showed prominent inclusions in the RPE and a

slightly abnormal morphology of rods early in life, with

slowly progressive degeneration of the photoreceptors.59

AAV vectors were administered subretinally or intravi-

treally to three affected dogs.60 This approach placed the

vector in direct contact with the cells of the RPE. The

treated dogs were evaluated and compared to untreated

affected dogs using electroretinography (ERG) and by

setting up obstacle courses in subdued lighting. ERG

testing showed improvement in treated eyes compared

with the same eyes prior to treatment and when compared

with the untreated contralateral eye. As expected, retinal

function did not completely return to normal, as the

injection of vector targeted only about 35% of the retina.

Injection of the vector into the vitreous body did not

improve retinal function.60 Importantly, the results of

qualitative (behavioral) assessments of visual function

conducted 4 months after treatment were consistent with

the ERG findings. The treated dogs were scored as

‘normally sighted’ under room lighting: they consistently

avoided objects placed directly in front of them and on the

treated side, but failed to avoid objects placed on the

untreated side.60 The oldest treated animal has remained

visually stable for 5 years (Acland, personal communica-

tion).

Neoplasia

Many cancers in the dog occur at higher frequencies in

certain breeds and can be traced through specific lineages

within a breed suggesting hereditary components. Other

cancers, such as mammary cancers, are very common but

do not have a specific breed predilection. Several clinical

trials have been attempted to treat hereditary or sponta-

neous forms of canine neoplasia.61–66 Experiments in the

treatment of canine oral melanomas are highlighted here

because, despite some differences, the overall biological

behavior of malignant melanoma is very similar in dogs

and humans, making the dog an ideal model for develop-

ment of therapy.

Oral melanomas in the dog are almost always malignant.

Dogs with stage III melanoma have a short median survival
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time of 4–5 months, and without surgical resection the

tumor will lead to death because 85–90% of the tumors

metastasize.67 In a clinical trial for canine oral melanoma,

liposomes conjugated to Fas-ligand (FasL) DNA were

injected directly into the tumors to induce apoptosis.61

Tumor regression of 12.5–58% was observed in three of

five patients (one dog showed stable disease, and tumor

size could not be evaluated in the fifth dog). No local or

systemic adverse effects were observed over the course of

the 7-day observation period. At 7 days after intratumoral

therapy, the study dogs were given standard treatment for

their tumors (surgery, radiation, or palliation). Two dogs

went into complete remission until they died of unrelated

causes at 24 and 44 weeks post therapy. Two dogs achieved

partial remission; one died 13 weeks later of an unrelated

cause. The disease progressed in the other dog 42 weeks

after treatment, was surgically debulked and the dog lived

for 82 weeks after gene therapy, at which time it died of its

melanoma.61 Fas-L expression in tumor cells obtained from

those dogs with the best responses to therapy was present

but was not detected in those cells from dogs with little or

no response to treatment.61

In another experiment, 26 dogs with malignant mela-

noma received intratumoral injections of lipid-complexed

plasmid DNA encoding a bacterial superantigen and one of

two cytokines (IL-2 or GM-CSF).63 No side effects were

noted and partial or complete remission was achieved in

12/26 treated dogs. Interestingly, the authors observed

high levels of antitumor cytotoxic T-cell activity in the

peripheral blood indicating that local administration of the

vector may have produced a systemic effect.63

Feline models
Cats are of particular interest for neurological disorders, as

the cat brain has been very well characterized both

functionally and physiologically. The anatomy of the cat

brain is also more similar to that of a human than that of a

mouse.68,69

Feline alpha-mannosidosis (AMD)70,71

Mannosidosis is a glycoprotein storage disease caused by a

deficiency of lysosomal acidic alpha-mannosidase and

results in the lysosomal accumulation of mannose-rich

oligosaccharides. The mutation in the feline model is a 4

base pair deletion, leading to a frame shift and premature

termination codon.72 Affected cats exhibit generalized

action tremors, intention tremors of the head and neck,

loss of balance, nystagmus, spinal ataxia, and dysmetria,

and histologically have widespread neuronal storage. All

signs are progressive and euthanasia is usually performed

between 18 and 20 weeks of age for humane reasons. As

with other lysosomal storage diseases, enzyme released

from genetically corrected cells can be taken up by mutant

cells, and a small amount of normal enzyme is sufficient to

correct storage lesions. Heterologous bone marrow trans-

plantation yielded dramatic results in the treatment of the

CNS disease of cats with AMD, even though therapy was

begun when mild clinical signs were present.73 To test the

efficacy of gene transfer, 8-week-old kittens affected with

AMD received multiple intracranial injections of rAAV

expressing the normal feline alpha-mannosidase cDNA.74

The injections were performed at a time at which there was

already clinical evidence of mild disease in the kittens.

Physical and neurological examination after gene therapy

revealed remarkable clinical improvement compared to

untreated controls. At 18 weeks of age, the cats showed

only mild signs of disease, while euthanasia was necessary

in the untreated littermates because of the severity of

neurological signs. One cat was followed out to 30 weeks of

age when it developed clinical signs comparable to those

seen at 18 weeks in untreated affected cats. Another treated

cat never showed any disease progression from 18 weeks of

life until euthanasia at 56 weeks of life. Magnetic resonance

imaging also demonstrated improvement in brain myeli-

nation after treatment. Enzyme activity measured in whole

brain sections was about 4% of normal. Storage lesions

were markedly reduced throughout the whole brain,

despite the fact that in situ hybridization showed mRNA

only around injections tracks.74

Equine models
The horse is most commonly used as a model for

osteoarthritis because the disease occurs naturally in this

species.75 Surprisingly though, virtually all of the gene

transfer experiments have been performed in induced

rather than natural models.76,77 While there are a number

of naturally occurring diseases in the horse, to our knowl-

edge only melanoma has been used in gene therapy

experiments.

Melanoma occurs in 80% of gray horses older than 12

years of age. Interestingly, they are encapsulated and

metastases occur infrequently early in the course of disease,

which is in contrast to human malignant melanoma.78

However, the histologic features and immunostaining

results show extensive similarity to the human tumors,

making the gray horse, like the dog, an attractive model to

investigate treatments.78 A total of 12 metastatic lesions on

seven horses were injected with plasmid DNA coding for

human interleukin-12.79 No side effects of the treatment

were observed. Three intralesional treatments spaced 2

weeks apart resulted in tumor size reduction, ranging from

complete resolution to a slight increase in size in one

animal. On average, the tumors decreased to 41% of their

original size, whereas the untreated tumors increased

slightly in size (107%) during the same time period.79

Once the tumors had decreased in size and the treatment

was discontinued, the tumors slowly grew larger but
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decreased again in response to an additional round of

treatment with the plasmid DNA.79 Histological evaluation

of biopsies taken from the treated lesions revealed an

influx of mainly CD4 but also CD8 lymphocytes around

the tumors, which was never observed in the untreated

control tumors.

Bovine models
Cattle are rarely used for gene therapy experiments,

probably because of their size and, thus, the expense of

scaling up viral vectors or recombinant protein prepara-

tions. However, calves weigh about 30–35 kg at birth,

about the same as a child, making them a good model to

address scaling up issues for therapies designed for older

children. There are few animal models of urea cycle defects

and to our knowledge there is no large animal model of

citrullinemia, other than the established bovine model

described below.80

Citrullinemia is a urea cycle disorder characterized by

hyperammonemia and is caused by a nonsense mutation

(C to T transition) in the gene coding for argininosuccinate

synthetase in cattle.81 While many of the clinical signs can

be controlled by dietary restriction of proteins, additional

illness or other stressors can easily result in hyperammo-

nemia.82 Citrullinemia in newborn Friesian calves is

characterized by progressive neurological signs after their

first feeding and subsequent death within the first few days

of life.80

Two neonatal calves were genotyped at birth and

supplemented (arginine/benzoate) to prevent hyperammo-

nemia and death.83 At 8 days of life, the affected calves

received an E1a-deleted adenovirus containing the human

argininosuccinate synthetase cDNA intravenously. The

effect of gene therapy was monitored both clinically and

biochemically. Radioactively labeled ammonium chloride

(15N) was given every 6h over a period of 2 days before and

on days 2–3 and 16–17 after vector treatment. Before

treatment, glutamine levels exceeded those of normal

calves by up to three-fold. Radioactive glutamine and

plasma citrulline concentrations decreased in both treated

calves to virtually normal levels indicating normal urea

synthesis, which lasted for at least 18 days after treatment.

Biochemical liver values were also measured to evaluate the

safety of the vector. A week after administration of the

adenovirus, both calves had elevated serum aspartate

aminotransferase concentrations. All other liver para-

meters remained normal at all time points. Finally, there

were no signs of inflammation by histological examination

of the calves’ liver 18 days after therapy, suggesting that the

adenoviral therapy was safe.83 Clearly, more studies will

need to be performed, as only two calves received the

vector and the last evaluation was done only 18 days after

treatment.

Conclusions
Many of the gene transfer studies performed to date in

large animals, especially sheep and non-human primates,

have been done using normal animals and have been

directed towards improving techniques. However, to fully

understand and treat genetic diseases in human patients,

the use of authentic animal models are required in studies

that for ethical and practical reasons are not possible in

humans. The large animals that have been used in gene

therapy studies have been selected based on several factors:

(1) the animals had similar clinical signs to affected

humans, demonstrating similar genetic mechanisms un-

derlying the diseases in both species; (2) their size, which

was similar to that of neonates and children; and (3) their

long lifespan, which should enable the detection of

limitations to therapy. Thus, large animals provide the

translational bridge from in vitro and mouse experiments to

human patients. Many of the genetic disorders in large

animal models that are available today are rare diseases but

they often represent an entire class of diseases, such as

lysosomal storage diseases, urea cycle defects, and neopla-

sia. Experiments in these models provide proof of principal

for a given disease group and help to define the potential

therapeutic efficacy and safety of gene transfer.
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