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Complex trait mapping in isolated populations:
Are specific statistical methods required?

Catherine Bourgain*,1 and Emmanuelle Génin1

1INSERM U535, Hôpital Paul Brousse, Villejuif, France

In this paper, we review the statistical methods that can be used in isolated populations to map genes
involved in complex diseases. Our intention is to highlight the fact that if the features of population
isolates may help in the identification of susceptibility factors for complex traits, the choice and design
of methods for statistical analysis in these populations deserve particular care. We show that methods
designed for outbred samples are generally not appropriate for isolated populations and could lead
to false conclusions.
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Introduction
Genetic studies in founder populations have led to many

successes in the identification of the mutations responsible

for various rare monogenic diseases. Efficient linkage

disequilibrium mapping strategies have been designed to

take full advantage of the existence of unique founder

mutations introduced only once in the populations

and thus shared by virtually all the affected individuals.

Indeed, the existence of founder mutations for rare

mendelian diseases has been described in a wide range

of populations, spanning from small strongly inbred

isolates to much larger populations founded by a few

thousand individuals, a few centuries ago. Heutink

and Oostra1 have proposed to classify founder populations

according to the number of generations since their

foundation – very old isolates (4100 generations),

young isolates (o100 generations) and very young isolates

(o20 generations) – arguing that the older the popula-

tions, the better they are for localizing the mutation. The

number of founders and the growth pattern of the

population also have crucial consequences on genetic

characteristics.

The genetic factors involved in complex diseases are

alleles that are neither necessary nor sufficient for disease

expression but that increase the risk, in often rather

modest proportions and through complex interactions

with many other genetic and environmental risk factors.

The question as to whether these alleles are likely to be

frequent or not is still open. Recent examples of both very

frequent2 and rare susceptibility alleles3 have been de-

scribed for various diseases. However, the frequencies are

always higher than those for rare monogenic mutations.

Further, in the case of relatively rare alleles, they are not

present in all the affected individuals but only in a small

subset. This change in characteristics of the genetic factors

under study has called for the development of new

mapping methods based either on linkage or/and on

association information.

As in the case of outbred populations, the genetic study

of complex traits in isolated populations requires a change

in methodology compared with monogenic disease stu-

dies. Indeed, the probability of observing a founder allele,

introduced only once in the population, when considering

a common susceptibility allele, is likely to be negligible.

Methodologies relying on that assumption are thus

inappropriate. However, isolated populations may still
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present interesting features with regard to complex trait

mapping. Environmental risk factors are generally more

uniform in isolated populations than in large outbred

populations and thus the genetic effects may be easier to

identify in the former. Greater genetic homogeneity is also

expected in these populations because of the limited

number of founders (and thus a limited gene pool) and

because of the absence of migration, which virtually rules

out the risk of unidentified population stratification.

Furthermore, the availability of extensive genealogical

records can provide large genealogies, potentially

very informative for linkage analysis. Finally, linkage

disequilibrium may extend over larger regions than in

outbred populations, increasing the power of association

study for gene detection. We note that whereas these

populations are alternatively described as ‘founder’ or

‘isolated’, the choice of ‘isolated populations’ better reflects

the properties likely to be useful for complex trait

mapping.

We do not intend to discuss whether isolated popula-

tions are the ‘El Dorado’ of genetic studies in this paper,

many authors have discussed this issue before.1,4 –7 As the

number of genetic studies in isolated population is rapidly

increasing and because the first successes are beginning

to appear, we instead propose to review and discuss

the statistical methods available for complex trait map-

ping in isolated populations, their advantages and their

limitations.

Apart from their isolation, a key characteristic of

these populations in terms of methodology is that,

contrary to outbred populations, the probability for

two random individuals to be related is not negligible.

Further, inbreeding might also be present. In this case,

not only are two individuals potentially correlated

but the two alleles in a random individual may also be

correlated. The existence of inter- and intra-individual

correlations has important consequences on most mapping

methods. In particular, the distinction between linkage

information and association information might become

tricky. We first review the methods for linkage studies of

qualitative and quantitative traits and then focus on

association studies. We show how classical methods

might not be valid in isolated populations and present

both the different strategies available to correct

existing methods as well as the new methods specifically

developed to make use of some particular properties

of isolated populations. We separate the different methods

depending on the extent of genealogical information

available. We would like to note that the problem of

correlations existing among random individuals is

not specific to isolated populations but also concerns

studies of extended genealogies in outbred populations.

The problems and methods discussed in the present paper

may thus be of a more general interest to human

geneticists.

Linkage analysis
Qualitative traits

Linkage analysis allows a comprehensive scan of the entire

genome for disease genes in a hypothesis-independent

manner.8 It looks for shared segments of DNA among

related patients that exceed the amount expected on the

basis of their relationship pattern. In large outbred

populations, this is usually performed on samples of

independent affected sib-pairs. In isolated populations,

affected sib-pairs are often not independent but related to

an extent that depends on the demography of the

population. Moreover, affected siblings and their parents

may be inbred, resulting in an excess of shared segments of

DNA on the entire genome as compared to what is

expected in the absence of inbreeding. Not accounting

for this increase in the expected sharing probability when

performing a linkage test on inbred sib-pairs enhances the

risk of falsely concluding linkage with a given region of the

genome as shown by Génin et al9 in the situation where

parents are not typed, and by Leutenegger et al10 in more

general situations. Specific allele-sharing statistics have

been proposed by McPeek11 for inbred pairs.

When genealogical data are available, one can use them

to trace back the relationships between the different

affected individuals and perform linkage analysis on

extended pedigrees. The approach has in particular been

very fruitful in Iceland where the strategy of using general

families that extended beyond the nuclear family has led to

the detection of significant linkage for a number of

complex diseases.12–24 If additional replications of these

findings in other populations are still required for valida-

tion, the success of this genealogical approach may be a

consequence of the population history of Iceland, as

explained by Gulcher et al.8 However, both the important

sample sizes available in the different studies and the high

density of markers used in the genome scans are certainly

other key parameters of the success. We note that the

genealogies used in these Icelandic studies are not

extremely large. Affected individuals are related at five

meioses at most (eg they are first or second cousins). One

may then wonder whether going back further in the past is

of additional usefulness in linkage analysis. Indeed the

chance that affected individuals within the same pedigree

share genetic risk factors identical by descent decreases

rapidly when the relationship between these individuals

becomes more remote and this is especially true for

common risk factors. Even in the case of a simple

dominant disease segregating in a pedigree, the evidence

of linkage provided by a pair of distant affected relatives

first increases with decreasing values of the kinship

coefficient, reaches a maximum that depends on marker

allele frequencies and then decreases.25 Further, pedigree

complexity and inbreeding loops greatly increase the

computational burden of linkage analysis and the different

computer programs available are limited in terms of
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number of individuals to include in a single pedigree.

Programs using exact multipoint estimation of identity by

descent (IBD), where information provided by neighbour-

ing markers is used to better estimate the IBD sharing at a

given marker, such as Allegro,26 require 2N�F to be less

than 26, where F and N represent the number of founders

and nonfounders in the pedigree, respectively. Programs

using Monte Carlo Markov Chain (MCMC) approaches to

IBD estimation, such as Simwalk2,27 can analyse larger

pedigrees but are also limited. Pedigrees and inbreeding

loops have thus often to be broken into smaller units. Such

breaking should be performed very carefully to minimize

false specification of expected sharing probabilities and

possibilities of spurious linkage detection.

When genealogical data are neither available nor

reliable, one may opt for a strategy that consists in

contrasting the observed sharing between pairs of affected

relatives to the sharing observed over the whole genome.

Indeed, genomic data can be used to estimate the

separation distance between two affected individuals28–32

or the inbreeding coefficient of an individual.33

Quantitative traits

In the context of quantitative trait linkage analysis,

variance component (VC) approaches are used on rela-

tively large pedigrees. Briefly, the principle of VC is to

consider that a phenotypic trait, Y, can be decomposed

into the addition of a fixed effect, one (or several)

quantitative trait locus (QTL) random effect(s) and an

environmental random effect. Both the QTL and environ-

mental effects are expected to have normal distributions

with mean 0 and standard deviation, respectively, sg and

se. Assuming that the trait Y is approximately normally

distributed in the population, it is possible to write the

joint likelihood of a sample and test the existence of a QTL

around the studied marker(s) by rejecting the null

hypothesis sg
2¼0 (no linkage), using for example, a like-

lihood ratio test (LRT). To write the likelihood, the

covariance between any pair of individuals in the sample

must be available, which, in turn, requires the character-

ization of the IBD sharing for all the pairs in the sample. If

exact multipoint IBD sharing estimation is limited to

moderate-sized pedigrees as already noted for qualitative

traits, approximate methods, such as correlation-based34 or

MCMC35 algorithms, allow to use VC for much larger

pedigrees. An illustration of the use of VC in isolated

populations is the work of Williams-Blangero et al,36 who

have conducted a linkage analysis on susceptibility to

Ascaris infection (a roundworm) based on a 444-member

pedigree from the Jirels, an isolated Nepalese population.

Individuals were selected based only on pedigree informa-

tiveness and not with respect to Ascaris phenotype. Owing

to a non-normal distribution of the trait, even after

transformation, a robust test37 was chosen and P-values

were validated using simulations. A total of 6209 pairs of

relatives were informative for the analysis and allowed the

detection of two QTLs, one on chromosome 1 and the

other on chromosome 13. In inbred pedigrees, additional

components of the variance are required to fully describe

even simple models. Estimation of these components relies

on the calculation of additional identity coefficients

between the pairs of relatives, a task that can seriously

increase the computational burden. However, as shown by

Abney et al,38 given the low power to estimate these

additional VCs, even in inbred samples, neglecting them in

the analyses should not impact the power to detect

linkage. Finally, VC approaches are not robust to depar-

tures from normality.39 When such a departure is due to a

selective sampling (the trait is normal in the population

but not in the selected sample), the regression-based

method proposed by Sham et al40 and implemented in

the software MERLIN-REGRESS is an interesting alternative

available for pedigree data.

In extremely large and complex pedigrees, these meth-

ods may be computationally infeasible, especially in the

context of genome screens. While analysing the Hutterite

pedigree (see Table 2 for a brief description of the

Hutterites) with a MCMC method for IBD-sharing estima-

tion, Chapman et al41 had to break it into subpedigrees. As

discussed for the qualitative traits, reducing pedigree

complexity may entail a loss of power. Dyer et al42 showed

how breaking a 1544 individual Hutterite pedigree into

three subpedigrees, divided by 2 the relative efficiency to

detect a QTL responsible for 20% of the phenotypic

variance of a quantitative trait with a total heritability of

50%. However, these authors did not study the sensitivity

of this result to the genetic model considered for the QTL.

Recently, Falchi et al43 proposed a new systematic method

for pedigree breaking that maximizes useful information

for linkage while minimizing the burden in IBD calcula-

tion. They show that the loss of power when using

subpedigrees depends on the genetic model.

Abney et al44 have proposed a regression-based linkage

method for quantitative traits in complex and inbred

pedigrees. The method relies on the existence of regions

that are homozygous by descent (HBD, the two homo-

logous regions are both copies of the same ancestral region)

in inbred individuals, to detect QTLs that act recessively.

HBD sharing is estimated using multipoint marker infor-

mation and the complete pedigree information. Excess

HBD sharing is expected for markers linked to QTLs acting

recessively. The trait is regressed on different covariates

including the HBD status. The test is equivalent to a t-test

for the coefficient of the HBD covariate, corrected exactly

for the known correlations among the individuals com-

puted using the pedigree information. Abney et al44 also

proposed a permutation test to correct for multiple testing

over the genome that preserves the correlation structure of

the data. Indeed, for permutation tests to be valid, the

elements to be permuted must be exchangeable, which is
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not the case when individuals are related. In the VC

context, Iturria et al45 have attempted to solve a similar

problem by approximately maintaining the familial corre-

lation structure. The procedure of Abney et al44 maintains

this correlation structure in an exact manner provided that

the genealogy is correctly specified and the trait under

study has a multivariate normal distribution. This permu-

tation procedure is extendable to a wide set of methods

relying on similar linear models for the data, including VC

approaches.

Association studies
Whereas linkage studies yield relatively broad locations for

susceptibility loci, association studies may be used to test

the role of particular candidate genes. As they are sensitive

to ignored population substructures, case–control studies

in outbred populations are used very cautiously and

family-based association tests are often preferred to avoid

the detection of spurious association. Yet, in the absence of

population stratification, case–control tests are more

powerful. They may thus regain interest in isolated

populations.

Possible bias

Two tests are classically used to test for association, the

case–control allele-based (CC-w2allelle) and the case–control

genotype-based (CC-w2genotype) w
2 tests, which contrast allele

or genotype frequencies between a sample of cases and a

sample of controls. Under the null hypothesis of no

association, CC-w2allelle and CC-w2genotype follow a w2 distribu-
tion. However, for this null distribution to be valid, the

cases and the controls must be independent, which might

not be true in isolated populations. Bourgain et al46 have

illustrated the increase of type I error (probability of

detecting an association when there is no association) of

the CC-w2allelle test in samples drawn from the Hutterite

population. Table 1 shows similar results for the CC-w2allelle
and CC-w2genotype in two different samples: the highly

inbred Hutterite sample and a non inbred sample of related

cases and controls from the GAW12-simulated genealogies

(see Box 1 for a brief description of the two data sets).

Table 1 Empirical type I error of the CC-w2genotype, CC-w
2
allele, CC-QLS and CC-corrw2 tests using either the w2 distribution or a

resampling procedure to get significance. Nominal type I error is 5%

Hutterite sample GAW12 isolate sample

SNP frequency SNP frequency

P-value computed with y Test statistic 0.5 0.2 0.5 0.2

w2 distribution CC-w2genotype 0.12 0.12 0.13 0.13
CC-w2allele 0.15 0.14 0.14 0.14

Resampling procedure CC-w2genotype 0.14 0.13 0.13 0.15
CC-w2allele 0.14 0.13 0.11 0.15

w2 distribution CC-QLS 0.051 0.050 0.046 0.053
CC-corrw2 0.050 0.049 0.052 0.051

5000 simulations of the Hutterite and GAW12 samples, performed for two allele frequency sets of SNP.

Box 1

GAW12 data
The data simulated for the 12th Genetic Analysis Workshop70 consist in samples of 1000 individuals with phenotype and genotype data.
These individuals are actually the living members of 23 noninbred and independent extended genealogies totaling 1497 individuals. The
mean kinship coefficient between the 1000 living individuals is relatively low (0.0018) because the 23 genealogies are independent, but
the standard error of the kinship is high (0.0166). In all, 50 simulated replicates based on the same genealogies were available. To study
the properties of the case–control tests, we chose one of these replicates in which 281 individuals out of the 1000 were cases and the
remaining 719 were controls (replicate number 5). We performed our own genotype data simulations for the cases and controls. Alleles in
the founders of the genealogies were randomly and independently drawn from a given allele frequency distribution. Mendelian
transmission of these alleles was then simulated throughout each genealogy.

Hutterite data
The Hutterites are a North American religious isolate originating from Tyrol whose entire population can be traced back in the 1700s/
1800s. The S-leut Hutterites of South Dakota are descendants of only 64 Hutterite ancestors. More than 12000 individuals are included in
the complete genealogy. We considered a sample of 310 atopic cases and 391 controls, described in Bourgain et al.46 The entire
genealogy of this sample could be constructed from the large Hutterite pedigree, yielding a 1623-person pedigree that included all
known ancestors of the sample. The mean inbreeding in the 701-individual sample considered was 0.033 with SD¼0.015, and the mean
kinship coefficient was 0.043 with SD¼0.033. We performed our own simulations using the real genealogy and status of the 701
individuals, as for the GAW12 data.
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When the probability to detect a false association is fixed at

5%, it is in fact greater than 10%, in both inbred

(Hutterites) and noninbred samples (GAW12) with related

individuals. Newman et al47 have illustrated the same

problem in the case of quantitative trait analysis in

Hutterite samples. Considering phenotypes such as IgE

level, LDL or BMI and regressing the trait on age, sex and

genotype, these authors showed how ignoring the pedigree

structure increases the type I error by a factor of 10–20

(they observed an empirical type I error of 10–22% for a

nominal type I error of 1%). Génin and Clerget-Darpoux48

focused on the problem of inbreeding in samples of

independent individuals. When cases and controls are

not correctly matched on the basis of inbreeding, the type I

error of the CC-w2genotype is modestly inflated. However,

when cases and controls are correctly matched for

inbreeding, inbreeding can increase the power of the test,

especially for recessive or quasi-recessive disease suscept-

ibility factors.

Caution with permutation procedures to assess
significance

To perform valid tests, one might consider using classical

test statistics and get accurate P-values by permutation

strategies. However, as already outlined in the context of

linkage analysis, existing correlations among individuals

must be maintained when conducting a permutation

procedure. In particular, the classical permutation test for

qualitative traits, where statuses are randomly reassigned

to genotypes to create dummy ‘null case control samples’

on which the statistic is computed (the permutation being

repeated a large number of times to get the distribution of

the statistic when there is no allele frequency difference

between cases and controls), might not be valid. As an

illustration, we present in Table 1 the type I error of this

permutation strategy for the CC-w2allele and CC-w2genotype
tests, in the Hutterite and GAW12 samples. Empirical type I

errors are much larger than the expected 5%, demonstrat-

ing that such permutation strategies do not protect against

spurious conclusions. The different solutions for perform-

ing valid tests of association depend on the amount of

genealogical information available. We start by presenting

the methods usable in the absence of genealogical

information and end with methods that require the

knowledge of the entire pedigree.

Genomic controls

Devlin and Roeder49 proposed the use of genomic controls

(GC) to prevent from spurious signal detection in associa-

tion studies. The primary concern of these authors was to

control for population stratification, but they also recog-

nized the impact of what they called ‘cryptic relatedness’

(unrecognized relationship among some individuals in the

sample) on association studies. The general principle of GC

approaches relies on the demonstration by Devlin and

Roeder,49 that the effects of cryptic relatedness and

population substructure on test statistics of interest are

essentially constant across the genome, under certain

conditions, and do not vary with individual locus proper-

ties (number of alleles, allele frequencies). Consequently,

the test statistic inflation due to cryptic relatedness is the

same for all markers throughout the genome. These

authors suggested the use of null markers (eg, polymorph-

isms unlikely to affect susceptibility) across the genome to

estimate the effects of confounding and to remove these

effects from the association test statistics. In practice, when

there is no association between the marker and the disease

but cryptic relatedness is present, the CC-w2allele statistic

follows a w2 distribution multiplied by a scaling factor l. l is
constant over the genome and only depends on the

relationship between all the individuals of the sample. l
is estimated using a robust estimator based on the

median49 value or on the mean value50 of the CC-w2allele
statistics over all the control markers. Bacanu et al51

suggested that 70 markers should be used for a good

estimation of l. In their original paper, Devlin and Roeder

proposed the GC approach for the Armitage’s trend

test,52,53 a genotype-based association test that is robust

to departure from HW but makes the assumption of

additive effects for the two alleles of an individual.

However, the GC principle is applicable to a wide class of

statistics for marker association testing. Tzeng et al54 have

recently proposed a method using GC in haplotype-based

case–control analysis.

In 2002, Bacanu et al55 adapted GC for association

studies of quantitative traits, using linear regression. A

phenotypic trait is regressed on different environmental

covariates and on one or several genotype covariates with

possible interactions terms. Testing for association reduces

to test whether the regression coefficients for the genotype

covariates are significantly different from 0 using a t-test.

As for the qualitative traits, Bacanu et al55 have shown that

the inflation factor of the t-test, l, due to population

substructure or cryptic relatedness, only depends on the

sample composition and not on the properties of the

individual loci. l can be estimated, as in the qualitative

trait, using a robust estimator based on the median value of

the t-test over all the control markers. The same principle

can be used while simultaneously testing the effect of

multiple loci with F-statistics.

TDT and related approaches

When parents are available, family-based association tests

such as the TDT56 may also be considered though Spielman

and Ewens57 underlined that the TDT is not a valid test of

association if the families have affected members in

multiple generations. Génin et al58 extended this result to

samples of independent case–parent trios where cases or

parents are inbred. However, the TDT remains a valid test

for linkage and its power increases with the strength of
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association. To overcome the problem of meiose depen-

dence that can arise when related affected are analysed

simultaneously, different extensions of the TDT have

been proposed, where an empirical robust variance is

computed (see Clayton59 for the case of multiple affected

sibs or Lake et al60 in more general situations such as

pedigrees including multiple nuclear families). The FBAT

software60–62 implements this latter approach and allows

the inclusion of any type of family. The PDT63 is based

on a similar strategy, but only considers two types of

informative families (trios with an affected child and

both parents genotyped and discordant sibships of at

least one affected and one unaffected sib with different

genotypes) and discards others even though they

could bring additional information. This robust variance

approach does not require the knowledge of the precise

genealogical links between the individuals. However,

when all the affected individuals in a sample are

correlated within a single pedigree (as it is the case for

instance with the Hutterite pedigree) and declared

as such, the robust variance approach has virtually no

power. Large pedigrees must thus be broken into smaller

subpedigrees to use this approach. Neglecting the correla-

tions between the different subpedigrees should not

introduce a detectable bias in the test provided that most

parent genotypes are available. This still needs to be

demonstrated and the optimal breaking strategy remains

to be defined.

Different extensions of the TDT have been proposed for

haplotypes analyses where multiple linked loci are con-

sidered simultaneously. Apart from the problem of ambi-

guities in haplotypes assignments (see, for instance,

Clayton64 or Zhao et al65), haplotypes analyses pose a

multiple-testing problem that can be solved as in Clayton

and Jones,59 who propose to test the global null hypothesis

that all haplotype effects are 0. However, if the number H

of haplotypes is large, this test may lack power as the

number of degrees of freedom is H�1 and Clayton and

Jones59 proposed to group haplotypes based on a similarity

index defined as the length, around a focal point, of the

continuous region over which haplotypes are identical by

state. Bourgain et al66 proposed another approach, the

Maximum Identity Length Contrast (MILC), which com-

pares the mean lengths of haplotype identity among all

transmitted haplotypes and among all nontransmitted

haplotypes. More recently, Seltman et al67 proposed a

grouping of haplotype based on their phylogeny and

Zhang et al68 generalized the MILC approach. The impact

of including related cases has only been evaluated in the

context of MILC,69 where the authors have shown that

closely related cases may be analysed simultaneously

provided that one is not the parent of another. Indeed

the null hypothesis tested by MILC is the absence of any

genetic risk factor involved in the disease in the studied

region and not a composite null hypothesis of no

association or no linkage as for the TDT or related family-

based association tests.

To our knowledge, there is no systematic power compar-

ison of the TDT (or related approaches) and the GC tests in

the context of cryptic relatedness. Bacanu et al51 exten-

sively compare the two approaches for qualitative traits, in

the presence of population stratification. They show that

GC performs better than the TDT as long as the scenario is

different from ‘a few highly differentiated subpopulations’.

For the case of cryptic relatedness, they only note that the

GC adjustment when notable levels of kinship are present

in the sample has a substantial cost in power, because l can

become quite large. They suggest that family-based

methods are likely to be more powerful in such situations.

However, the need for genotype information on family

members, such as parents or sibs, for the TDT to be most

powerful, can drastically reduce the number of cases

eligible for a study, a concern that may be particularly

relevant for late-onset diseases. By allowing the recruit-

ment of larger samples, case–control strategies may thus

prove to be more efficient.

Association tests when the entire genealogy is
available

When the genealogy is entirely known, it is preferable to

use this information. Bourgain et al46 have recently

proposed two methods for case–control association stu-

dies, suitable for any set of related individuals, provided

that their genealogy is known: the case–control quasi-

likelihood score test (CC-QLS) and the case–control

corrected w2 test (CC-corrw2). The methods are suitable for

large inbred pedigrees. The principle of the CC-corrw2 is

similar to GC as it consists in the computation of a

correction factor, l, for the CC-w2allele test. The difference is

that the value of l is derived analytically using the

extensive pedigree information. Bourgain et al46 showed

that l depends only on the values of all the kinship and

inbreeding coefficients of the individuals included in the

sample. CC-QLS and CC-corrw2 have similar forms, but the

CC-QLS actually compares allele frequencies in cases and

controls estimated while taking into account the known

correlations among the individuals, whereas CC-corrw2

compares allele frequencies estimated by simply counting

the number of alleles in each group. Bourgain et al46

showed that CC-QLS is asymptotically locally more power-

ful than CC-corrw2. We present in Table 1 the empirical

type I errors of these tests in the Hutterite and GAW12

samples. They are not significantly different from the

nominal type I errors, showing that these tests correctly

control for the presence of correlations among the

individuals in the samples, provided that genealogical data

are exhaustive. No power comparison of these latter

approaches with GC has been published yet. However,

when extensive genealogical information is available, exact

computation of the correction factor as in CC-QLS or CC-
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corrw2 should be more powerful. A test similar to CC-corrw2

was used by Gretarsdottir et al14 and Styrkarsdottir et al17 in

the Icelandic population.

Abney et al44 have proposed two different methods to

test for association of quantitative traits in samples with

known genealogy using the linear regression framework.

Here again, the method roughly corresponds to an exact

derivation of the inflation factor l of the t-test described in

Bacanu et al55 instead of an estimation through control

markers as in the case of GC. More specifically, Abney et al

proposed the ‘allele-specific HBD’ method (ASHBD) and

the ‘general two-allele model’ method (GTAM). The

ASHBD uses the same framework as the HBD linkage

method described above, but models the effect of a

particular allele rather than the effect of a main locus.

The method also uses multipoint marker information to

estimate the HBD status. Both inbreeding and a recessive

effect of the allele at the locus tested are required for the

ASHBD method to be of interest. GTAM is a single point

method suitable for general genetic models and for inbred

or outbred pedigrees. The model does not include an HBD

status covariate but a covariate, indicating the number of

alleles of a particular type at the locus tested and a second

covariate modeling the genotypic effect. To test whether

these two covariates have regression coefficients signifi-

cantly different from zero, the method corresponds to an F-

test corrected exactly for the known correlations among

the individuals. The permutation procedure proposed to

correct the HBD linkage test for multiple testing over the

genome is also applicable to both the ASHBD and GTAM

tests.

Conclusion
In reviewing the literature on isolated populations, the

number of papers praising their merits for mapping genes

involved in complex disease susceptibility is impressive.

But it is also striking to note the lack of discussion about

the need for specific statistical methods to correctly and

best search for genetic risk factors in these populations. The

review of the statistical methods, presented in this study, is

not intended to be exhaustive. We only tried to present

some of the available methods, their advantages and limits,

for both linkage and association studies, and considering

qualitative and quantitative complex traits. Our intention

was to highlight the fact that if the features of population

isolates may facilitate the identification of susceptibility

factors for complex traits, these studies deserve particular

care in the choice and design of statistical methods. To

illustrate how the use of methods designed for outbred

samples could lead to false conclusions when applied to

isolated populations, we considered two extreme examples:

a highly inbred isolate (the Hutterites) and data from

noninbred extended genealogies where all the affected

individuals were considered, including first- and second-

degree relatives. As shown by Grettarsdottir et al,14 remov-

ing first- and second-degree relatives from the sample

minimizes the bias in noninbred samples. However, since

the number of cases may be limited in relatively small

isolates, using methods allowing for an inclusion of all

cases can be crucial.

Depending on whether extended genealogies are avail-

able or not, the methods that can be used differ. When the

entire genealogy of the population is available, as it is the

case in the Hutterite population, methods that take

advantage of this information to characterize the correla-

tions existing between the individuals and to account for

them in the tests should obviously be preferred. When

genealogies are not known or not accurate, then one may

opt for methods that contrast what is observed at a given

marker to what is observed on average over the whole

genome. These GC approaches require additional genotyp-

ing of markers, but are probably a good alternative to

extensive genealogical studies.
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