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In some autosomal dominant conditions, there is a correlation between new mutations and paternal age,
with new mutations arising almost exclusively in the male germ line. To test this hypothesis in Treacher
Collins syndrome, we analyzed 22 sporadic cases, determining the parental origin of the pathogenic
mutation in 10 informative families. Mutations were found to be of both paternal and maternal origin,
without a detectable parental age effect, confirming that a paternal age effect is not universal to all
autosomal dominant disorders. A discussion on the parental origin of mutations and paternal age effect in
other diseases is included.
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Introduction
Treacher Collins syndrome (TCS; MIM 154500) is an

autosomal dominant craniofacial disorder affecting the

development of structures derived from the first and

second branchial arches during early embryonic develop-

ment.1 The resulting clinical features comprise down-

slanting palpebral fissures with lower eyelid coloboma,

malar and maxilar hypoplasia, malformed ears and con-

ductive hearing loss due to atresia of the external ear

canal.2 The gene underlying this condition, TCOF1,

mapped to chromosome 5q32, was cloned in 1996.3

Pathogenic mutations in the TCOF1 gene are spread

throughout its coding region, and are usually point

mutations or small frameshift deletions and insertions,

the majority of which are family-specific. Recent studies

proposed the existence of mutational hot spots in TCOF1,

indicating that exons 23 and 24 are responsible for roughly

one-third of all known pathogenic changes.4,5

The estimated prevalence of TCS is 1/50 000 live births,

with 60% of the cases resulting from new mutations.6 It

has been suggested by Jones et al.,7 after reviewing 98 cases

from the literature, that sporadic cases of TCS are

associated with advanced paternal age. We are employing

for the first time molecular methods to test if new

mutations causing TCS arise preferentially in the germ

line of older men. We investigated the parental origin of

the pathogenic mutation in 22 sporadic cases of TCS and

compared our results to the literature.

Subjects and methods

Subjects

We studied 70 TCS families (43 from Brazil, 22 from the

USA, two from Argentina, one from Switzerland, one from

Italy, and one from Finland) in which a pathogenic

mutation had been previously identified.4,5 From this

sample, 26 cases were familial, 42 were sporadic and two

could not be classified. Parental origin of the pathogenic
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mutation was investigated in 22 sporadic cases for which

there was available parental DNA.

DNA was extracted from whole blood according to

standard techniques.8 PCR was performed with 40ng of

DNA, using primers described elsewhere9–11 for TCOF1

exons and splice sites, or primers designed through

Primer312 for intronic sequences. PCR products were

analyzed through SSCP in native 5% acrylamide or MDEt

gels, as described elsewhere.4 Paternity was confirmed for

all cases by means of five highly polymorphic tetranucleo-

tide markers (D3S1754, D5S820, D6S477, D7S821, and

D12S391) following standard procedures. Parental sex was

confirmed through PCR amplification of X- and Y-chromo-

some specific markers (UniSTS:99017 and UniSTS:156591).

Selection of informative markers

A total of 17 single-nucleotide polymorphisms (SNPs) have

already been described in the coding sequence of TCOF1,

and three intronic alterations.4,10,11 The SNPs lying in the

same or in adjacent exons to the one harboring the

pathogenic mutations were ascertained to determine

whether they were informative for determining the

parental origin of the pathogenic mutation for each family.

Intronic segments were screened through SSCP to detect

novel SNPs. Introns up to 600bp (IVS7, IVS8, IVS9, IVS11,

IVS12, IVS14, IVS19, IVS20, and IVS24) were screened in

full, whereas only portions (B700bp) adjacent to the exon

of interest of larger introns were screened (IVS6 – distal,

IVS13 – proximal and distal, IVS16 – distal, IVS17 –

proximal, IVS22 – distal, and IVS23 – proximal and distal

fragments). Intronic primers were constructed via Primer3

and are available on request. Mobility shifts that indicated

the sequence alteration would be informative were

sequenced.

Establishing the phase of the SNP alleles and the
pathogenic mutation

Two methods were used to establish the phase of the

pathogenic mutation and the informative SNP: allele-

specific (ARMS) amplification13 followed either by direct

sequencing or analysis on denaturing 5% acrylamide gel,

and sequencing of cloned PCR products. Cloning of PCR

products was performed with the TOPO TAt Cloning Kit

(Invitrogen, Carlsbad, CA, USA). Sequencing of cloned and

genomic segments was performed in an ABIPrism Model

377 (Version 3.0), using the BigDye Terminator Cycle

Sequencing kit (Applied Biosystems, Foster City, CA, USA).

ARMS primer design and amplification

Allele-specific primers were designed either aiming at

amplifying different SNP alleles, or to distinguish between

a mutant and the corresponding wild-type chromosome.

ARMS primers were combined with the ones regularly used

to amplify the exon containing the mutation, in the

appropriate direction. The allele-specific primer sequences

are available on request.

Results
Selection of informative families

An informative marker for determining the parental origin

of a sporadic mutation must be present in a heterozygous

state in the propositus and one parent, while the other is

homozygous or, alternatively, when both parents are

homozygous for different alleles. In five families, one of

the SNPs already identified in TCOF1 satisfied these

criteria: in families TCS10 and TCS18, the propositi were

heterozygous for the c.1347 T-C SNP in exon 10; in

family TCS24, the c.1611 G-A SNP in exon 11 was

informative; and in families G1282 and TC512, the

propositi were heterozygous for the c.3938 C-T SNP in

exon 23. For the 17 remaining families, we screened the

intron(s) adjacent to the exon harboring the pathogenic

mutation in order to characterize novel SNPs that could be

used to distinguish between the maternal and paternal

allele in the propositus.

Identification of novel SNPs

Three novel intronic SNPs were identified, two in intron 24

(IVS24+350 C-G and IVS24+439 C-A) and one in intron

6 (IVS6-701 C-T). Three of the propositi with the

pathogenic mutation in exon 24 were heterozygous for

the IVS24+350 C/G polymorphism, whereas one additional

patient was heterozygous for the IVS24+439 C/A alteration.

The remaining patients with pathogenic mutations in exon

24 were homozygous for both SNPs. The IVS6-701 C/T SNP

could be used to determine parental origin of the mutation

for one family where the propositus had a mutation in

exon 7. In total, 10 families were informative for

determining the parental origin of the pathogenic muta-

tion in the propositus, and for the remaining 12 no

informative SNP could be found.

Determining parental origin of mutation in
informative families
ARMS For the four informative families with the 5-bp

deletion in exon 24, allele-specific primers were used to

amplify each polymorphic allele separately. A denaturing

gel analysis showed that in family TCS 15 the mutation was

of paternal origin, whereas in families TCS 6, TCS 9

(Figure 1) and TCS 25, the mutation arose on the maternal

chromosome. For propositi TCS24 and G1775, the allele-

specific primers were constructed to discriminate between

the deleted and wild-type alleles. Sequence analysis of the

PCR-amplified products showed that in both cases the

mutation was on the paternally inherited allele.

Cloning For those patients with the pathogenic mutation

located in the same exon as the informative SNP (exons 10
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and 23), the PCR products were cloned and sequenced.

Eight patients were analyzed in this manner, but only four

were heterozygous for the polymorphism. Parental geno-

type for the polymorphism was established through SSCP

analysis. In the four informative cases, the mutation was of

paternal origin (Figure 2). Results for all informative

families are presented in Table 1.

Paternal and maternal age effect in TCOF1 mutations

Mean paternal and maternal ages for all the studied cases

are presented in Table 2. If we consider only those cases

where the parental origin of the mutation could be

established, we have a mean paternal age of 27.8 (seven

cases) for those cases where the mutation was on the

paternal chromosome, and a mean maternal age of 26.4

(three cases) for those of maternal origin.

Discussion
In the present study, we were able to determine the

parental origin of a new mutation in 10 out of 22 families

with sporadic TCS, and found that seven were of paternal

origin and three were present in the maternally derived

chromosome, with no preferential origin of new mutations

in the male gametogenesis (P¼0.172). It is interesting to

note, however, that in all three cases of maternal origin the

mutation involved was the same, namely a 5-bp deletion in

exon 24 (c4135-4139delGAAAA), that is the single frequent

recurring mutation in TCS, found in roughly 15% of all

diagnosed cases.4,5,10 A greater number of cases should be

investigated to see if maternal mutations are always

restricted to this mutational hot spot or can also occur

elsewhere in the gene.

Although the first classic genetic study by Jones et al.7

favored an increased paternal age for sporadic occurrences

C G C G C     G

TCS 9-1 TCS 9-2 TCS 9-3

Figure 1 Denaturing gel electrophoresis of ARMS-ampli-
fied PCR products. The letter above each lane indicates the
allele amplified for the IVS24+350 C/G SNP. The IVS24+350
G primers also amplify an unspecific product. An arrow
points to the allele showing a 5-bp deletion in the patient.
Lanes 1, 2: patient TCS 9-1, C/G heterozygote; lanes 3, 4:
patient’s mother, a C/C homozygote, and lanes 5, 6:
patient’s father, also a C/G heterozygote.

Table 1 Informative families and parental origin of sporadic mutations

Patient Mutation Exon SNP Method
Parent of
origin

Father’s age
(years)

Mother’s age
(years) Nationality

G1775 c.720�727delAGCACCCC 7 IVS6-710 C-T ARMS Father 35.7 31.6 American
TCS 10 c.1408�1409delAG 10 c.1347 T-C Cloning Father 25 28 Brazilian
TCS 18 c.1406�1409delAGAG 10 c.1347 T-C Cloning Father 25 22 Brazilian
TCS 24 c.2018�2025delCAGTCACC 13 c.1611 G-A ARMS Father 20.2 17.9 Brazilian
G1282 c.3639delG 23 c.3938 C-T Cloning Father 34.3 33.4 American
TC512 c.3933^3934insG 23 c.3938 C-T Cloning Father 34.8 33.2 American
TCS 6 c.4135�4139delGAAAA 24 IVS24+350 C-G ARMS Mother 26.0 20.7 Brazilian
TCS 9 c.4135�4139delGAAAA 24 IVS24+350 C-G ARMS Mother 26 34 Brazilian
TCS 15 c.4135�4139delGAAAA 24 IVS24+439 C-A ARMS Father 20 17 Brazilian
TCS 25 c.4135�4139delGAAAA 24 IVS24+350 C-G ARMS Mother 34.1 24.7 Brazilian

Figure 2 Sequencing of cloned PCR products. In this example (patient TC512), the wild-type sequence of exon 23 is in cis with
the c.3938 T SNP (grey arrow) (a), and the allele with the c.3933^3934 G insertion (black arrow) in cis with the c.3938 C variant
(grey arrow) (b).
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of TCS, mean paternal age among parents of all sporadic

TCS cases in our sample was 30.376.6 years, with a median

of 29 years. If we take into account only Brazilian families

(13 cases), which represent the largest sample, mean

paternal age falls to 26.874.1. As there are no population

means for paternal age for the Brazilian population

available from vital statistics, a control group of 88 families

with a cleft lip/palate proband from the same socio-

economic background as the Brazilian TCS families was

ascertained, yielding a mean paternal age of 27.976.7.

There is no statistically significant difference between the

mean paternal age in the control group when compared to

the fathers of TCS probands from Brazil (P¼0.5266) or the

total sample (P¼0.1555). Even considering only those

cases where the new mutation in TCOF1 was shown to be

of paternal origin, paternal age (27.8) is not increased when

compared to the mean paternal age for the Brazilian

population.

The list of diseases in which the parental origin of new

mutations was elucidated through the use of molecular

analysis is listed in Table 3. Exclusive paternal origin of new

mutations with a paternal age effect was found for

mutations in the FGFR2 (Apert, Crouzon and Pfeiffer

syndromes),14,15 FGFR3 (achondroplasia),16 and RET

(MEN 2A and MEN 2B)17,18 genes. Until recently, the most

favored explanation for these observations was that the

mutations arise during cell replication, and the predomi-

nance of new mutations in the male germ line is due to the

increased number of germ line cell divisions in spermato-

genesis compared with that in oogenesis.19,20 As sperma-

togonia continue to replicate throughout a man’s life, the

sperm of older men would accumulate a greater number of

mutations, thus producing the observed paternal age

effect. But if the number of cell replications is the only

factor associated with new mutations, an increase of

paternal age would have been observed in all syndromes

that show a preferential paternal origin of mutations, and

this correlation is not observed in various conditions,

including the present report.

Some authors suggested that the preferential origin of

paternal mutations is correlated to the type of mutation,

implying that base substitutions occur primarily during the

male gametogenesis, while other types of mutations, such

as deletions and insertions, are more likely to arise during

the female gametogenesis.21,22 This difference would result

from intrinsic peculiarities in the male and female

germinative cells, such as different methylation patterns

or in the efficiency of the mechanism of repair. However,

the correlation between single-nucleotide transitions and

transversions and paternal origin of mutations failed to be

confirmed when parental origins of mutations were

determined for other conditions (Table 3 and references

therein).

A recent work23 tested the relation between paternal age

and sperm mutation frequency for the FGFR3 c.1138G-A

mutation that causes achondroplasia. Their data indicate

that the paternal age effect found in achondroplasia cannot

be explained by the increased number of mutations in the

sperm of older men. The authors suggest that the mutation

may confer a selective advantage either to the sperm or the

zygote carrying it. A similar selective advantage to sperm

carrying FGFR mutations had already been suggested by

Oldrigde et al.24 It is therefore possible that the selection of

sperm or zygotes carrying the pathogenic change is

dependent on the function of the mutated genes, but it is

not yet clear how this would cause an increase of affected

children in the offspring of older men.

Table 2 Mean parental age for tested families

Mean paternal age Median Cases

Total 30.376.6 29 21
Paternal origin only 27.8 25 7

Total 27.476.4 27.1 22
Maternal origin only 26.4 24.7 3

Table 3 Parental origin of mutation in other syndromes

Syndrome Gene Type of mutation
Paternal
origin (%)

Informative
families

Increased
paternal age References

Achondroplasia FGFR3 Missense 100 40 Yes (35.86) 16
Apert FGFR2 Missense 100 57 Yes (33.3) 14
Crouzon FGFR2 Missense, splice (all base changes) 100 11 Yes (34.8) 15
Pffeifer FGFR2 Missense, splice (all base changes) 100 11 Yes (33.65) 15
MEN2A RET Missense 100 10 Yes (39.3) 17
MEN2B RET Missense 96.1 26 Yes (33) 18, 25
Neurofibromatosis NF1 Indirect testing 91.6 32 No (30.02) 26, 27
Retinoblastoma RB Indirect testing 82 49 No (29.7) 28
Rett MECP2 Missense, nonsense, splice, insertion, deletion 96 27 No (31.3) 29
Tuberous sclerosis TSC2 Missense, nonsense, splice, insertion, deletion 41.7 12 No (29.6) 30
Treacher Collins TCOF1 Nonsense, splice, insertion, deletion 70 10 No (30.3) Present study
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In conclusion, we show that new mutations in TCOF1

are not exclusivelly paternal and show no paternal age

effect. An investigation of parental origin of mutations in a

larger sample will be helpful to determine if there is a

predominance of mutations arising on the male gameto-

genesis and if maternal mutations occur only at the exon

24 hot spot or can also appear elsewhere in the gene.
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