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Multilocus statistics to uncover epistasis and
heterogeneity in complex diseases:
revisiting a set of multiple sclerosis data
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New statistics are developed to gather the contribution of many alleles at different loci to common
diseases. Both inferential and descriptive statistics are included in order to uncover epistatic effects as well
as heterogeneity. The problem of multiple testing is circumvented by considering a global null hypothesis.
Global testing is supplemented by descriptive methods that make use of measures like odds ratio or the P-
value of individually tested allele combinations. Visualization helps to reflect complex data sets. The
methods described here have been scrutinized by statistical simulations, and we show that power gains
can be substantial as compared to single locus statistics. Typing data of multiple sclerosis patients and
controls are investigated, representing an example of larger scale information in screening candidate
genes for their impact on complex diseases. New insights emerge from this data set demonstrating genetic
heterogeneity and evidence for epistasis.
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Introduction
Association studies have received substantial interest in the

advent of the genomic era. In complex diseases, association

studies can offer advantages over linkage studies, both,

from a statistical and practical point of view.1–5 However,

problems with regard to population stratification and

failure to reproduce results have drawn criticism and have

led to several guidelines on how to conduct statistical

analyses of association studies.6 –8 A major issue in

association studies is that of studywide statistical signifi-

cance (ie problem of multiple testing9–11). Association

studies are often performed by screening many loci in

patients and controls and evaluating the frequencies for

each locus separately. Patients are then stratified for the

predisposing allele of a certain locus and analysed for allele

frequencies of a second locus. By this approach, the

number of comparisons increases rapidly and has to be

considered in the statistical analysis. A stringent correction

of P-values (to attain a studywide P-value by procedures

such as Bonferroni’s or Holm’s12) can lead to reduction in

power since correction procedures tend to be conservative

and may, therefore, hamper reproducibility.

Single locus statistics to test for genetic association with

disease make use of several statistical models. Choices are

comparisons of allele, phenotype (allele carrier) or geno-

type frequencies. All these models have the advantage of

being analysed in contingency tables where a w2 or Fisher

statistics can be applied. The use of general linear models

has been proposed,13 for which most models have no direct
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correspondence in classical genetic association studies. We

have developed a statistic to test the following null

hypothesis: no allele combinations (ACs) comprising

alleles from a fixed number of loci are associated with a

given disorder. Given such a set of loci, we define an AC of

an individual to be a set of alleles which contains exactly

one allele from each genotype of each locus. Therefore, if l

loci are considered 2l different ACs can be formed if the

individual is heterozygous at each locus. ACs represent

potential haplotypes if the loci are confined to the same

chromosomal region. The number of loci considered for

these sets is subject to practical considerations that are

discussed below. The disease-modifying effects of ACs can

be modelled by considering extensions of several genetic

models to many loci. Rejection of the null hypothesis

shows the existence of an AC to be associated with

disease, that is, no particular AC is designated. Descriptive

methods are implemented, including tests of individual

ACs with the possibility of performing Bonferroni

correction. Odds ratios (ORs) for all ACs are computed

and highlighted graphically. These ORs are computed in

terms of AC frequencies, which can be computed in

several ways in the multilocus case. We define these

frequencies in the Material and methods section.

The graphical representation of ORs and other measures

of association gives a concise summary of complex

data sets and has proven useful for both simulated

and real data sets. We apply a normalization of

ORs of combinations by comparing each OR with its

expectation based on ORs of single alleles. We used a

simulated data set to illustrate the problems involved and

show that power gains can be substantial when comparing

our statistics to a conventional analysis. Descriptive

methods may be effective in revealing interaction between

several loci. We then applied the test statistics and

descriptive methods to a case–control study for multiple

sclerosis (MS).

Material and methods
When deriving ACs for an individual that is homozygous

at some of the loci being investigated several identical ACs

are observed. The identical ACs can be weighted in

different ways. The possibilities investigated here are

illustrated in Figure 1. In the additive case, all ACs are

formed for each individual irrespective of whether they are

identical or not and are used to compute AC frequencies in

patients and controls. In the single count model ACs

derived for each individual are counted at most once.

These two models differ in how homozygous individuals

are weighted. If evaluated for single loci the additive and

single count models correspond to allele and phenotype

frequencies, respectively. Genotypes are directly analogous

in the single and multilocus cases. To quantify epistatic

effects we consider the quotient of observed and predicted

ORs which is called normalized OR (nOR) hereafter (cf

Appendix A). The statistical test can be performed for any

of the genetic models. As a result of multiple interdepen-

dencies in the data set, a bootstrap simulation procedure

was applied (cf Appendix A). The data set used for re-

evaluation contains unrelated MS patients and healthy

control subjects. These groups are matched ethnically and

have been used in several association studies so far.14–16

Details of clinical MS parameters and other group char-

acteristics have been given previously.14 The most basic

information is summarized in Table 1. The data set

contains 77 markers, 1187 MS patients and 524 control

subjects. 60992 and 55498 alleles have been typed in the

groups, respectively.

Simulation study

We have simulated our statistics for several scenarios to

evaluate its power. A data set of variable size was generated

according to a coalescent process.17,18 A total of 20

unlinked loci were simulated mimicking the situation of

an association study. To consider different alternative

hypotheses, we picked an AC comprising an allele

from the first and second locus and divided the data

set into patients and controls generating deterministic

frequencies in two groups (cf Appendix A). Frequencies

were determined according to a single count model.

The differences in the frequencies between the groups as

well as the sizes of the cohorts were varied giving rise to

several different simulated situations. In each case,

a test was applied to detect association of ACs comprising

two alleles.

Figure 1 Genetic models as applied and extended to
multiple loci. The additive model takes into account all
possible combinations of alleles. The single-count model
counts any particular AC at most once for an individual and
the genotype model takes into account full genotypes at
each locus.
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Results
Simulation study

Results from the simulation study are summarized in

Figure 2. Differences in AC frequencies between patients

and controls of 0.21 (Figure 2a) and 0.11 (Figure 2b) were

evaluated. As can be seen, power is excellent for a

difference of Z0.21, when a number of 400 individuals is

sufficient to reach power 40.8. Power drops below 0.8

when differences are smaller than 0.11 and sample sizes are

smaller than 800 individuals (Figure 2b).

Furthermore, we have evaluated the effect of choosing

the wrong formal genetic model. We have simulated data

as above, but then used single locus statistics to evaluate

the simulated data sets. Figure 2c shows that power is

reduced dramatically. Power of 40.8 cannot be achieved

for o1000 individuals when the difference of the AC

frequency is 0.11 between the groups. Figure 3 shows

descriptive analyses of a simulated data set with 60 loci.

This data set was produced as for the power simulations.

The size of each spot represents the maximal OR 4 1 of all

ACs at the respective locus pair in the lower left part, by

including only ACs with at least 50 observations. The

minimal ORo 1 is shown in the upper right part. As can be

seen, a strong association between loci 1 and 2 is evident,

together with spurious associations of loci 1 and 2 with

other loci. Also, a considerable background of false

positives is present (Figure 3a). The background can be

reduced by selecting ACs more stringently for inclusion

into the descriptive analysis. Figure 3b represents such an

analysis, which requires at least 80 observations, and the

causative AC from locus 1 and 2 can be readily identified.

To address the problem of spurious associations of alleles

from other loci with a predisposing allele at either locus 1

or 2, ORs were normalized as described in Material and

methods. As shown in Figure 3c (cf Appendix A) spurious

associations could be eliminated. In contrast, single-allele

analysis shows strong associations for many loci

(Figure 3d).

MS case–control study

Table 2 lists the loci included in this study. Table 3 lists

results from global hypothesis testing. Clearly, the results

are highly significant. Descriptive results for two-way

interactions are shown in Figure 4. Results for two different

genetic models, additive (Figure 4a) and single count

(Figure 4b) are presented. Results for the different models

are similar, yet there are noteworthy differences. For

example, associations of the markers NFKBIA-2 through

NFKBIA-5 with the marker D18S35 seem to be stronger for

the additive than for the single-count model. In contrast,

the TNF-1/FGF1 association from the single-count model is

absent for the additive model. In general, several ACs are

striking and fit into pathogenetic hypotheses. We point to

combinations which include the allele IFNA-1:07. Associa-

tions for the single alleles were reported previously.14,15

ACs including this predisposing allele and a certain allele

of another locus seem to be strongly associated with MS.

However, the display of nOR (Figure 4c; single-count

model) shows that most of these associations can be

explained by the individual effect of the IFNA-1:07 allele.

ACs with strong disease association for which single alleles

have weak effects include TCRB-5/HLA-DRB1, TCRB-5/

NFKB1-2, TNF-1/HLA-DRB1 and HLA-DRB1/D18S364.

These ACs display presumed epistatic effects, which

correspond to large nORs (Figure 4c). As defined by testing

ACs in a contingency table individually, the most sig-

nificant ACs are iterated in Table 4 for the single count

model.

Results for the single-count model in primary progressive

MS (PPMS) are shown in Figure 4d. Differences between the

group of all MS patients and that of PPMS are apparent.

Comparing Figures 4b and d, HLA-DRB1 appears to be more

important in predisposing to PPMS. Also, the locus D18S41

is more strongly associated in PPMS patients than in all MS

patients. However, no epistatic effects are present as

revealed by nOR analysis (data not shown). Epistatic effects

are demonstrable for the combinations TNFRSF1A-1/

NFKBIA-11, TNFRSF1A-2/NFKBIA-11 and TNFRSF1A-2/

NFKBIL1-1. These are only present for PPMS. More

descriptive results including lists of ACs and graphical

analyses for other MS groups/parameters are presented on a

supplementary website (http://www.s-boehringer.de/cd).

All software used for this paper is available for down-

loading.

Table 1 Properties of the MS patients and the control group

All MS patients Subgroup with primary
progressive course

Subgroup with relapsing
remitting or secondary
progressive course Control group

Number 1187 178 (15%) 738 (62.2%) 524
Age of onset/Age 30.12 (79.71; 11–74)** 34.1 (710.5; 11–57)** 29 (79; 11–69)** 39.3 (711.5; 20–70)**
Enhanced disability
status scale (EDSS)

4.2 (72.3; 0–9.5)** 5.8 (71.9; 0.5–9)** 3.9 (72.2; 0–9.5)**

EDSS per year (EDSSY) 0.9 (71.22; 0–9)** 0.92 (71.1; 0.04–7)** 0.86 (71.2; 0–8)**

**Standard deviations and the range are given within parantheses.
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Discussion
Our simulation study has shown that statistical power to

detect genetic associations can be excellent whenever a

global null hypothesis is considered. This approach

circumvents the need for multiple testing at the cost of

not readily identifying the presumably causative ACs.

Therefore, descriptive methods are needed to weigh

individual ACs. Several descriptive measures exist among

which we used P-values of individual tests, ORs and nORs.

Each measure generates a different aspect of the data set,

which places a caveat on each descriptive measure. The

simulated data have shown that ACs may be identified by

descriptive measures if all differences between cases and

controls are concentrated in a single AC. If several ACs

have small contributions each, as is to be expected in a

complex disorder, descriptive measures are less likely to

give clear evidence for single factors. The test itself is robust

against heterogeneity since a global null hypothesis is

tested and all differences between the groups are summed

up to produce a single test statistics. No exact rules can be

given of how to identify single ACs relevant to disease

predisposition. However, several patterns can hint at

relevant ACs. The pattern exhibited by INFA1:07 shows

spurious associations with other alleles in the absence of

epistatic effects, which is because of strong associations

from the single allele. This effect could be revealed by

considering nORs.

As shown previously,15 the phenotype frequency for

IFNA1:07 was 6.3% (OR 12.41, Pco8�10�4). The combi-

nation TCRB-5/HLA-DRB1, which corresponds to

TCRBV6S3*2 and HLA-DRB1*03, has been described pre-

viously.14 The OR for TCRBV6S3*2 was 2.72 (Pco0.006),

for HLA-DRB1*03 it was 1.42 (Pco0.8) and for the AC

TCRBV6S3*2/HLA-DRB1*03 it was 22.03 (Pco5�10�3)

comparing with an OR of 23.91 (Pc¼3.64�2) in Table 4

(HLA-DRB1:03/TCRB-5:02; ie HLA-DRB1:03/TCRB-5:02)

(Pc¼3.64�2). The published data correspond to the

single-count model (phenotype frequencies) and differs

slightly due to inclusion of few extra probands. In this

example, the additive model generates similar results, since

the number of individuals homozygous for the relevant

HLA-DRB1 allele or the relevant TCRB allele is extremely

low. In addition, this example demonstrates that the

statistical analysis presented here is in concordance with

previous evaluations but it is more efficient, since multiple

comparisons can be made in a single step. Moreover, allele

combinations that may be overlooked because of border-

line significance of certain alleles from single loci will be

detected by comprehensive descriptive analysis. Taking

into account P-values, ORs and nORs simultaneously may

suggest interesting candidates.

In our statistics, a full model of a given complexity is

considered (say all pairs of loci). This is desirable when

sizable data sets are under scrutiny (say up to about

hundred loci). However, the number of ACs increases
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Figure 2 Power simulations of a global null hypothesis.
Power simulations for the test statistics under the alter-
native of one AC of size 2 being associated with the disease.
Difference (either 0.21 or 0.11; a, b) denotes the surplus
fraction of cases bearing the associated AC. Controls are
fixed to a 19% frequency of the predisposing AC (a, b).
Power simulations under misspecification of the inheritance
model (c) (for further explanations see text). When a single
AC of size 2 is associated with the disease, a test statistics
for single alleles is employed.
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polynomially with the number of loci and exponentially

with the number of alleles contained in each AC. This

imposes a practical limitation for applying this test in

terms of calculation time. The number of alleles contained

in each AC is a parameter which is to be chosen carefully.

The bootstrap procedures assume that AC frequencies can

be estimated with high accuracy (ie the error in AC

frequency estimation is only partially accounted for in

the test statistics). We have, therefore, limited our analyses

to combinations of two alleles. If SNPs are used through-

out, ACs of size three could be realistically screened in case

less than about 1000 probands are present in each group.

One issue raised in case/control designs is the problem of

population stratification. Considering several loci simulta-

neously can accentuate this confounder. In our simulation

study we have assumed no stratification. The MS group set

is closely matched with the control group, ethnically.14

Nevertheless, population stratification remains an issue

and certain applications may require our statistics to allow

for stratification. Some authors have proposed solutions to

the stratification problem.19–22 Among these are general

methods to estimate a degree of memberships to popula-

tion substrata for each individual.21 These values can be

used to test for association in each substratum and

combine these statistics to a global statistics. Another issue

raised by association studies in complex diseases is that of

inferential vs descriptive statistics. We have put forward the

notion to look at association studies from a descriptive

Figure 3 Two-way interaction in a simulated data set. Maximal (bottom left) and minimal ORs (top right, a, b) of ACs for a
simulated data set according to the single-count model. The size of each point corresponds to the value of the OR according to
a logarithmic scale. The minimal number of observations for an AC to be included is 50 (a, c) and 80 (b), respectively. nORs
are shown in part (c) Minimal ORs (top) and maximal ORs (bottom) of single alleles for the data set are shown in part (d).
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Table 2 Results of statistical tests to infer genetic association in the MS data set

Model Cardinality Test statistics E [T] V [T] P-Value

Codominant 1 850.191 265.328 761.022 o5E-5
Additive 1 1006.45 309.813 1149.43 o5E-5
Genotypes 1 1867.89 890.886 4284.58 o5E-5
Codominant 2 90973.9 44669.6 1.18e+07 o5E-5
Additive 2 145245 69453.5 3.21e+07 o5E-5
Genotypes 2 207192 122809 5.41e+07 o5E-5

Cardinality denotes the number of alleles considered in each AC. Test statistics results from calculating the test statistics from the MS data set. E and V
are estimations for the distribution of the statistics as derived from drawing from the control data set. P-value is the empirical p-value derived from the
bootstrap procedure.

Table 3 Loci included in this study of genetic MS association

Abbreviation Type Description Localisation MIM/Ref.

BCL2 SNP B-cell leukaemia 2, exon 1 T7 T (g/a) 18q21.3 151430
BCL3-1 Mic B-cell leukaemia/lymphoma 3 19q13.1–q13.2 109560
BCL3-2 SNP BCL3 exon 7 polymorphism N217N (c/t) 19q13.1–q13.2 109560
CD28 Mic CD28 antigen (Tp44) 2q33 186760
CD3D Mic CD3D antigen 11q23 186760
CD4 Mic CD4 antigen (p55) 12pter–12p 186940
CTLA4-1 SNP Cytotoxic T-lymphocyte-associated protein 4, exon 1 T17A (c/t) 2q33 123890
CTLA4-2 SNP CTLA4 promotor –318 (a/g) 2q33 123890
CTLA4-3 HT Haplotype of loci CTLA4-1, CTLA4-2 2q33 123890
D18S35 Mic Postulated association with IDDM 18q21
D18S364 Mic s. D18S364 18q21
D18S41 Mic s. D18S41 18q21
D4S1628 Mic Microsatellite NFKB region 4q22
D4S1647 Mic s. D4S1628 4p14
D4S242 Mic s. D4S1628 4q22
FGF1 Mic Fibroblast growth factor 1 (acidic) 5q31.3–q33.2 131220
HLA-DRB1 HT Human leucocyte antigen, DRB1 locus 6p21.3 142857
ICAM4 SNP Intercellular adhesion molecule 4 19p13.2–cen 111250
IFNA1 Mic Interferon a1 9q22 147660
IFNA10 SNP Interferon a10 C20X (t/a) 9q22 147577
IFNA17-1 SNP Interferon a17 171insA 9q22 147583
IFNA17-2 SNP IFNA17 I184R (t/g) 9q22 147583
IFNB1 SNP Interferon b1 Y51Y (c/t) 9q22 147640
IFNG Mic Interferon g 12q24.1 147570
IFNAR1 Mic Interferon receptor 1 21q22.1 107450
IL1A Mic Interleukin 1a 2q12–q21 147760
IL10 Mic Interleukin 10 1q31–q32 124092
IL1RN Mic Interleukin 1 receptor antagonist 2q14.2 147679
IL2 Mic Interleukin 2 4q26–q27 147680
IL2RA Mic Interleukin 2 receptor, a chain 10p15–p14 147730
IL5RA Mic Interleukin 5 receptor, a chain 3p26–p24 147851
IRF1 Mic Interferon regulatory factor 1 5q23–q31 147575
IRF2 Mic Interferon regulatory factor 2 4q34.1–q35.1 147576
LST1 SNP Lymphocyte specific transcript1 +38a/g 6q21.3
LTA-1 SNP Lymphotoxin a (LTA; TNF super family, member 1), +11 (g/a) 6p21.3 153440
LTA-2 SNP LTA +81 (a/c) 6p21.3 153440
LTA-3 HT Haplotype LTA-1/LTA-2 6p21.3 153440
LTA-4 SNP LTA exon 1 6p21.3 153440
LTA-5 SNP LTA H696P (a/c) 6p21.3 153440
LTA-6 SNP LTA N723T (c/a) 6p21.3 153440
LTA-7 HT Haplotype LTA-5/LTA-6 6p21.3 153440
NFKB1-1 SNP Nuclear factor of k light polypeptide gene enhancer in

B-cells 1 (p105), exon 12 A380A (c/t)
4q24 164011

NFKB1-2 SNP NFkB1 exon 17 L616F (g/t) 4q24 164011
NFKBIA-1 SNP Nuclear factor of kappa light polypeptide gene enhancer

in B-cells inhibitor, alpha, -420 c/t
14q13 164008

NFKBIA-2 SNP NFkBIA promotor -708ins8 14q13 164008
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point of view.11 Although the statistic presented here

provides a P-value (ie multiple testing is not involved), the

topic of stringent inferential statistics is only deferred

rather than answered satisfactorily. The issue is that

association studies are continuously ongoing efforts. Also,

tests for global null hypotheses are repeated when the data

set grows. We rather consider this test as an additional

useful descriptive measure to evaluate complex data sets. In

our opinion, the burden of using stringent correction

procedures for multiple testing (such as Bonferroni’s or

Holm’s) can be relieved and should allow for more

inclusive presentation of large association studies in terms

of the amount of loci reported. We want to add that the

test presented can be used in a more direct way to evaluate

relative contributions from different loci. By excluding

loci from the test, the contribution to the overall test

statistics can be assessed (cf. Payami et al23). Descriptive

and especially graphical methods can help to give

comprehensive yet concise summaries of complex data

sets. Especially data sets that are grown historically

can be analysed by our methods, allowing to include

the entire data set whenever the study is expanded.

This can give more insights into data that have been

gathered long before. So far, independent replications are

the only means to verify any particular finding. ACs

suggested in this paper to be associated with MS are yet

to be replicated.

Still, there are very few examples that demonstrate

complexity of a disorder which goes beyond single locus

inheritance (eg Gabriel et al,24 Hugot et al,25 Ogura et al26).

Clear evidence for more than a couple of loci increasing

liability to disease through additive or epistatic effects is

yet to be proven unequivocally. In part this is because of

lack of appropriate statistics, which therefore should be

considered a topic of paramount interest. In summary, we

consider the statistical methods presented to improve the

analysis of complex disease substantially when reasonable

guidelines are respected.

Table 3 (continued)

Abbreviation Type Description Localisation MIM/Ref.

NFKBIA-4 SNP NFkBIA promotor polymorphism, -1001 a/g 14q13 164008
NFKBIA-5 SNP NFkBIA promotor polymorphism, -1169 a/g 14q13 164008
NFKBIA-6 SNP NFkBIA promotor polymorphism, -1256 c/t 14q13 164008
NFKBIA-7 SNP NFkBIA D27D c/t 14q13 164008
NFKBIA-8 SNP NFkBIA A102A c/t 14q13 164008
NFKBIA-9 SNP NFkBIA intron 3 g49a 14q13 164008
NFKBIA-10 SNP NFkBIA intron 3 g262a 14q13 164008
NFKBIA-11 SNP NFkBIA exon 6 3’UTR t2c 14q13 164008
NFKBIL1-1 SNP Nuclear factor of k light polypeptide gene enhancer

in B-cells inhibitor-like 1, exon 4 C225R (c/t)
6p21.3 601022

NFKBIL1-2 SNP NFkBIL1 promotor polymorphism, g/a 6p21.3 601022
NFKBIL1-3 SNP NFkBIL1 promotor polymorphism, a/t 6p21.3 601022
NFKBIL1-4 HT Haplotype NFkBIL1 -2, NFkBIL1-3 6p21.3 601022
TNFRSF1A-1 SNP Tumour necrosis factor receptor super family, member

1A, exon 1 P12P (g/a)
12p13.2 191190

TNFRSF1A-2 SNP TNFRSF1A promotor polymorphism, -609 g/t 12p13.2 191190
TNFRSF1B SNP Tumour necrosis factor receptor super family, member

1B, 15del
1p36.3–p36.2 191191

TCRB-9 Mic TCR b, exon V26S1 1p36.3–p36.2 191191
SCA2 Mic Spinocerebellar ataxia 2 (olivopontocerebellar ataxia 2,

autosomal dominant, ataxin 2)
12q23–q24.1 601517

TEA SNP T cell early antigen 14q11.2
TNF-1 Mic Tumour necrosis factor (TNF super family, member 2) 6p21.3 191160
TNF-2 SNP TNF promotor polymorphism, -862 (a/c) 6p21.3 191160
TNF-3 SNP TNF promotor polymorphism, -805 (c/t) 6p21.3 191160
TNF-4 SNP TNF promotor polymorphism, -238 (g/a) 6p21.3 191160
TNF-5 SNP TNF promotor polymorphism, -308 (g/a) 6p21.3 191160
TCRB-1 SNP TRCBV5S3 7q35 186930
TCRB-2 Mic TRCBV6S1 7q35 186930
TCRB-3 Mic TRCBV6S14 7q35 186930
TCRB-4 Mic TRCBV6S1C 7q35 186930
TCRB-5 Mic TRCBV6S3 7q35 186930
TCRB-6 Mic TRCBV6S4 7q35 186930
TCRB-7 Mic TRCBV6S7 7q35 186930
TCRB-8 SNP TRCBV6S7C 7q35 186930

In column Type ‘Mic’ indicates a microsatellite locus, ‘SNP’ indicates single nucleotide polymorphisms and ‘HT’ indicates that haplotypes are
considered.
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Figure 4 Two-way interaction for MS. Maximal (bottom left) and minimal ORs (top right) of ACs in the MS data set
according to the additive model (a) and the single-count model (b). The size of each point corresponds to the value of the OR
by a logarithmic scale. Minimal amount of observations for an AC to be included is 10. nORs are shown in part (c). ORs for
ppMS are shown in part (d) (minimal count of observations is 30).
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Figure 4 (continued)
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During the preparation of this manuscript similar

methods have been developed. A method to identify

genotype combinations was proposed.27 To reduce the

complexity of the set of relevant genotype combinations

the authors group genotype combinations with similar

effect into partitions which are then evaluated by cross

validation for their predictive power. In another study, a

global test statistic is computed in a two-stage process.28

First, a sum of test statistics is calculated similar to the

present study. A variable number of loci is considered at

this point. The subset which displays the strongest

association according to the initial test statistics is chosen

and evaluated for significance by bootstrapping techni-

ques. Simultaneous effects of loci are not considered.
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Appendix A
Statistical tests

Our statistics comprises sets of loci of fixed size. We denote

the set of loci with L¼ {l1,y, ln}, when n is the count of loci

under scrutiny. The set of subsets of L, when each subset

has t elements is denoted with Lt. We now consider a global

test statistics, which is composed of single statistics gleaned

from elements in Lt.

T ¼
X

l2Lt

TðlÞ

Each statistics T(l) is of the following form:

TðlÞ ¼ Flð�2ðlÞÞ
�2ðlÞ is the test statistics resulting from a conventional �2

statistics from a contingency table29 with the counts

defined by the respective models as described above. Each

individual statistics T(l) tests for independence of AC

frequencies and disease status. Fl denotes the cumulative

distribution function of each statistics. Therefore, T(l) is

uniformly distributed from 0 to 1 if all observations are

independent. Clearly, if all loci are unlinked, each statistics

T(l) will contribute equal weight to the summary statistics

T.

Various interdependencies exist in the observations

included in the individual statistics. For the additive and

single-count models, observations at a single set of loci are

dependent on each other. Also statistics T(l) and T(l0) are

dependent if l and l0 overlap in general. Additionally, loci

may be linked which may result in LD between certain

alleles. This can lead to dependencies between certain test

statistics T(l) and T(l0) even if l and l0 do not overlap. To

account for these interdependencies we employ a bootstrap

procedure to estimate the distribution of T under the null

hypothesis.30

To perform one replication step of the bootstrap

procedure, we draw with replacement individuals from

either the patient or the control group. Two cohorts are

produced which equal in size the number of probands

contained in the patient and control group, respectively.

Both these groups can therefore be considered to be drawn

from the same empirical distribution. The tests statistics is

applied on this data set. We use 20 000 replications to

estimate the distribution of T in each case. To produce our

simulated data sets, we use a coalescent process as

described elsewhere.17,18 We simulate microsatellite data

with a stepwise mutation model. Case and control group

were of equal size for each data set. The mutation rate

chosen is � ¼ 5 which is a realistic assumption for ‘‘real-

world’’ populations.21 To estimate power, we repeat the test

80 times for each scenario under the null hypothesis. We
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have stopped this process early, if either the lower bound of

the confidence interval (CI) at the 0.95 level for the power

is X85% or the upper bound of the CI is r40%.

Missing data are handled as follows. For each set of loci l

the test statistics T(l) is computed for the genotypes of

these loci. If there are missing data in one AC the whole AC

is ignored. If data are missing at random, the statistics

remains valid. For real data sets missing data may be

different for the patient and control groups. We compute

the number of probands to draw in the bootstrap

procedure as follows:

cd ¼ ad
cs
as

when cd is the count of probands to draw, ad the count of

alleles of the group for which a bootstrap data set is to be

drawn, cs the count of proband in the source cohort and as
the count of alleles therein.

Descriptive statistics

The normalized OR is computed from a predicted distribu-

tion for ACs. This is assumed to be the product distribution

of individual alleles, conditioned on the phenotype:

Pðal1 ; . . . ; aln jYÞ :¼
Yn

1

Pðali jYÞ

The OR is defined by

OR ¼
Pðal1 ;...;aln jY¼1Þ

1�Pðal1 ;...;aln jY¼1Þ
Pðal1 ;...;aln jY¼0Þ

1�Pðal1 ;:::;aln jY¼0Þ

and can be computed for, both, the predicted distribution

(ORp) and the observed joint distribution (OR) of alleles. In

this paper we define nOR by

nOR ¼ ORp

OR
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