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Combined high resolution linkage and association
mapping of quantitative trait loci
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In this paper, we investigate variance component models of both linkage analysis and high resolution
linkage disequilibrium (LD) mapping for quantitative trait loci (QTL). The models are based on both
family pedigree and population data. We consider likelihoods which utilize flanking marker information,
and carry out an analysis of model building and parameter estimations. The likelihoods jointly include
recombination fractions, LD coefficients, the average allele substitution effect and allele dominant effect
as parameters. Hence, the model simultaneously takes care of the linkage, LD or association and the
effects of the putative trait locus. The models clearly demonstrate that linkage analysis and LD mapping
are complementary, not exclusive, methods for QTL mapping. By power calculations and comparisons,
we show the advantages of the proposed method: (1) population data can provide information for LD
mapping, and family pedigree data can provide information for both linkage analysis and LD mapping;
(2) using family pedigree data and a sparse marker map, one may investigate the prior suggestive linkage
between trait locus and markers to obtain low resolution of the trait loci, because linkage analysis can
locate a broad candidate region; (3) with the prior knowledge of suggestive linkage from linkage
analysis, both population and family pedigree data can be used simultaneously in high resolution LD
mapping based on a dense marker map, since LD mapping can increase the resolution for candidate
regions; (4) models of high resolution LD mappings using two flanking markers have higher power than
that of models of using only one marker in the analysis; (5) excluding the dominant variance from the
analysis when it does exist would lose power; (6) by performing linkage interval mappings, one may get
higher power than by using only one marker in the analysis.
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Introduction ited disease genes. Using restriction fragment length

Twenty years ago, variations in human DNA were recog-
nized as genetic markers in linkage study.' After that,
the advances in molecular biology and computational
technology have led to mapping several human inher-
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polymorphism (RFLP) markers and polymorphic micro-
satellite loci, linkage analysis and positional cloning
have been used successfully in mapping the chromosome
locations of Mendelian disease genes. The success mainly
depends on one premise that the disease genes of
Mendelian traits have a large effect on the phenotypes.>
In fact, there is usually a one-to-one correspondence
between disease gene genotypes and the disease pheno-
type for Mendelian traits. Moreover, the correlations
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between genotypes and phenotype of Mendelian traits
are strong. Given sufficient family data, Mendelian traits
can be mapped with high probability by linkage analy-
sis.

With the encouragement of successful mapping Mende-
lian trait genes, there has been growing interests and
endeavors in the study of complex traits such as asthma
and diabetes. For complex diseases, the inheritance
patterns and phenotype definitions as with genetic etiol-
ogy are much more complex. The trait/affection status is
usually a continuous variable.®> The mapping of complex
disease genes is much harder. Novel statistical methods
such as both linkage analysis and linkage disequilibrium
(LD) mapping or association study are needed in dissecting
complex traits. As very dense marker maps such as single
nucleotide polymorphism (SNP) are available,* both link-
age analysis and association study are utilized
simultaneously for mapping complex disease loci.>¢
Almasy et al’ and Fulker et al® proposed to use combined
linkage and association analysis for quantitative trait loci
(QTL). Sham et al’ studied the power of linkage versus
association analysis of quantitative traits by analytically
calculating non-centrality parameters of test statistics.
Abecasis et al'®~'? proposed test statistics of association
studies for quantitative traits in nuclear families, general
pedigrees, and selected samples. Cardon'® studied a sib-
pair regression model of LD for quantitative traits. All
these researches concentrated on family data which
include sib-pairs, and used only one marker in analysis.
In Fan and Xiong,'* we proposed a linear regression meth-
od of high resolution mapping of quantitative trait loci by
LD mapping analysis. The method is based on population
data. Using two flanking markers, the regression models
have higher power than that of models using only one
marker.'*

It is well-known that family pedigree data can be used in
both linkage analysis and association study, and population
data can be used in association study. Hence, it is necessary
to consider a method to combine both population data and
family pedigree data in the analysis. In this paper, we
propose to perform both linkage analysis and high resolu-
tion LD mapping for QTL based on combined family and
population data. Linkage interval mapping is based on
family data, and LD mapping is based on both family pedi-
gree and population data. Based on variance component
models, we construct likelihood to analyse family and
population data in Section of Models. Then, we discuss
the parameter estimations and regression coefficients. The
linkage information, i.e., recombination fractions, is
contained in the variance-covariance matrix, and the asso-
ciation information, i.e., the LD coefficients, is contained
in the mean parameters or the regression coefficients. We
calculate the non-centrality parameters for association
study and linkage analysis, respectively. Using the non-
centrality parameters, we perform power calculations and
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comparisons. The technical details to calculate the regres-
sion coefficients, parameters, non-centrality parameters are
left in the Appendixes.

Models

Consider a quantitative trait locus Q which has two alleles
Q; and Q. Suppose that the allele frequencies of Q; and
Q; are q; and g, respectively. Assume that two markers A
and B flank the trait locus Q in an order of AQB. Marker
A has two alleles A and a with frequencies P, and P,, respec-
tively. Marker B has two alleles B and b with frequencies Pg
and P, respectively. For a nuclear family of k children and
two parents, let us denote their quantitative traits by a
vector y=(Vs Ym, Y1,--+, ¥x)', genotypes at marker A by a
vector (AsA, Ay -+, Ap)', and genotypes at marker B by a
vector (B;B,,,By, -+, Bi)'. Here yr is the trait value of the
father, Aris the genotype of the father at marker A, and
By is the genotype of the father at marker B. Other nota-
tions are defined, similarly, for the mother with subscript
m and for the i-th child with subscript i. The log-likelihood
is defined by L= &X2log(2r) 1logls| i(y Xw)'sS!
(y Xuw). The notations of the log-likelihood are defined
as follows. For the mean component Xy, we consider the
following regression equation such as model (1) in Fan
and Xiong'*

Vi= ﬁ + wiy + Xai0ta + Xpiop + Zaida + Zpidp + G; + ¢;, (1)

where f is overall mean, w; is a row vector of covariates
such as gender and age, y is a column vector of regression
coefficients for the covariates w;, G; is polygenic effect, e;
is error term. Assume that G; is normal N(O, aé), and e; is
normal N(0,02). Moreover, G; and ¢; are independent. x,;
Xpi, Za; and zg; are dummy variables defined by

2P, if A;=AA P? if Aj=AA
xXai=< P, Py if Aj=Aa, zpi=< PPy if A;=Aa,
2P, if Aj=aa Pz if Aj=aa
2P, if B, =BB P} if B;=BB
xgi=< P, Pp if B;=Bb, zgi =< Pp,Pp if B;=Bb.
2Py if B;=bb P: if Bi=bb

oa, op, 04, and JOp are regression coefficients of the dummy
variables x,;, xpi, Z4; and Zzg;.

The model matrix X is defined by

T

1 Wf XA f X Bf Z Af Z Bf X f

T
1 Wm Xam XBm Zam ZBm X m

T

x=Jd1 wi xa1 xp za1 zm \— | X§
1wk Xak Xk Zak  ZBk X;

and pu=(f, y*, «a, ap, 04, 0p)" is a vector of regression coeffi-
cients. X is a (k+2) x (k+2)



variance-covariance matrix defined as

1 0 po po -+ Po
0 1 po po -+ po
5 po P01 piz - Pk 2 wh 5
"l pro po P 1 py |7 WhETE T =
Po Po Pii Prz 1

0% + 0f + 02,02 is variance explained by the putative QTL Q,
6% is polygenic variance, and ¢? is error variance. The
genetic  variances o7 = a3, + 0y, and oy, = oy, + g, are
decomposed into additive and dominant components.
po = (03, +0¢,)/(20%) is correlation between parents and
children, p; = (mjqo3, + Ajjq0sy + 0¢,/2 + 6¢4/4)/0> is corre-
lation between the i-th child and the j-th child, m;q is the
proportion of alleles shared identical by descent (IBD) at
QTL Q by the i-th child and the j-th child, and Ajq is the
probability that both alleles at QTL Q shared by the i-th
child and the j-th child are IBD.

For population data, an intuitive rationale of regression
model (1) is given in Fan and Xiong'®. In general, one
can construct a variance-covariance matrix for any type of
pedigree in a similar way as above. Assume that there are
two independent sub-samples of data: (1) population data:
n independent individuals; (2) family data: I-n (I>n) inde-
pendent families. Let us list the log-likelihood of the n
independent individuals by L,,---, L,, and the likelihood
of the I-n families by L,;,1, -+, Ly . Then the overall log-like-
lihood is L=Y!_,L;. The unknown parameters are u=
(ﬂ,y,ocA,ocB,6A,6B)T,a§a,0§d,aéa,aéd, and ¢2. Using the likeli-
hood ratio tests, one may test statistical significance of
the parameters of interest.

Parameter estimations and regression coefficients
Regression coefficients Let p; be the effect of genotype
QQ;, i, j=1, 2, w2 =u21. Denote the population effect mean
by w=pnqi + 2129192 + Hpq5  and  define  ag=qiun
+(q2— gtz —q2pi22, 0q=2p12— fi11— to2- It py1=a, pi=d, and
fzp=—a as in the traditional quantitative genetics,® o=
a+(q2—q1)d is the average allele substitution effect, and dq
=2d characterizes the dominant effect. In general, one
may define a=puq—(u11+u22)/2 and d=p12— (u11+u22)/2. It is
well known that the additive variance aéa = quqzotZQ and
the dominant variance o7, = (q192)*%. A true random
effect model describing the trait value is y=f+wy+g+Git+e;,
where

n1p  for genotype QiQu

& =< pyp for genotype Q1Q:.
Uy for genotype Q2Q2

Denote LD coefficient between trait locus Q and marker A
by Dso=P(AQq)-q:1Pa, LD coefficient between trait locus Q
and marker B by Dqgg=P(BQ;)-q:1Pp, and LD coefficient
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between marker A and marker B by D,p=P(AB)-P,Pp. Let
the additive and dominant variance-covariance matrices
be

_ (2PsPy 2Dgp _ (PiP; Djy
Va= <2DAB ZPbPB)’ and Vp = (DgB pp ) 2

Moreover, let us denote three ratios D3p/(P.PaPpPp) =
Rip, Diq/(PaPaq1q2) = Riq, and Dgp/(q192PsPp) = Rgp.  As
in Appendix B,'* we can show that the coefficients of
regression equation (1) are given by

Raq RapRas
U\ _ oy 2Djq o — PaPa | /4142%Q 3)
oB A 2Dqp Q Rar RasRaq |1 RiB7

v/ PsPp
R%, R2,R?
2 AQ AB""QB S
8\ _yoa(Paal, _ [ P Qid20q (4
8 PAD2 )" | R Rkl | T RE,
PgPy

Parameters of variance—covariances Denote the recombi-
nation fraction between trait locus Q and marker A by 04¢,
the recombination fraction between trait locus Q and marker
B by 0qp, and the recombination fraction between marker A
and marker B by 0,5. Fulker and Cardon'® proposed to esti-
mate the proportion n;;, of allele IBD at putative QTL Q for
a sib-pair i and ] by ft,‘jQ = E(n,-iQ\niiA,ni,-B) =dy + ﬁnAnijA""
B.pmip where m4 and n;p are the IBD proportions of alleles
shared at the marker A and marker B, respectively. The coeffi-
cients a,, .4 and f,p are given by

g = (1 2040)* (1 20ap)°(1  20qg)”
™ 1 (1 204)° ’

g, — (L 2000 (1 20m)°(1 20s0)”
™ 1 (1 204)° 7
g =L P B

2

Let Ajja, Ajjg be the probability of sharing two alleles IBD at
markers A and B for a pair of sibs, respectively. In Fan,!” we
proposed to estimate Aj;, by equation A,-,-Q = o+ famija+
Bpmijp + raAjja + rgAjp. Under the assumption of no interfer-

ence, the coefficients are as follows (Fan'”):
- 20a0)* (1 204p)*(1  204p)*
1 (1 2048)° ’
-t 2008)" (1 2040)'(1 20an)*
1 (1 2048)° '
Ba=Bra Ta,Bp =P 18,

) v
Was+ (1 ya)(1 wp)*

where Y, =05, + (1 0aq)” and vz = 05 + (1 Ogs)”. As-
suming that the positions of marker A and marker B are
known, 0,5 can be calculated through Haldane’s map func-
tion. Then only one of 04q and 0qp is unknown since the
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other can be calculated through Trow’s formula.'® For
general relatives i and j, Almasy and Blangero'® proposed
an algorithm to calculate the proportion 7, of allele IBD
at putative QTL Q, and the expected probability Ay, that
both alleles at QTL Q are IBD. In Fan,!” we derived formulas
to calculate the covariances of trait values for a few types of
relatives directly without performing matrix operations.

Association and linkage studies From equations (3) and
(4), we can see that the coefficients of LD (i.e., Dy and
Dqp) and gene effects (i.e., og and 0qp) are contained in
the regression coefficients. Moreover, we show in the above
paragraph that the linkage parameters (i.e., recombination
fractions 0,q, 0qgp and 0,p) are contained in the variance-
covariance matrix. Assume that markers A and B are in
LD with the trait locus Q, i.e., Dsq#0,Dqp#0. We may
simultaneously test LD of marker A and marker B with trait
locus Q, the gene substitution and dominant effects by test-
ing as=0p=04=05=0. From equation (3), we may test LD of
markers A and B with the trait locus Q and the gene substi-
tution effect o by testing a,=0=0. From equation (4), we
may test LD of markers A and B with the trait locus Q
and the dominant effect by testing J,=05=0.

To test linkage, one may use the likelihood ratio test of the
log-likelihood L. Under the null hypothesis of no linkage
between the major trait locus Q and the markers, 0=
0qge=1/2. Under the alternative hypothesis of linkage,
0a0#1/2 or Oqgp#1/2. By comparing the difference of maxi-
mum log-likelihoods under the alternative and null
hypotheses, we may use y statistic to test the linkage. We will
derive analytical formulas to explore the linkage interval
mapping by the nuclear families in a similar way to Sham et
al’ according to statistical theory of likelihood ratio tests.°

Non-centrality parameters of association study

Assume that there are no covariates. Then u=(f3, o4, o5, 94, 0p)°.
Consider the overall log-likelihood L = Zle L;, where L; is
the log-likelihood of trait values y; of the i-th family or indi-
vidual. Let X; be the variance-covariance matrix of y;, and X;
be its model matrix. Denote the total trait wvalues
y=(y%,---,y})", the total variance-covariance matrix by
Y=diag(Xy,---,%; ), and the model matrix X = (X%,---,X})".
Let B, &4, 65,64, 65,5, % be the maximum likelihood estima-
tors of f5, a4, ap, 04, 0p%; X. The estimate of u is p=
X5 1X] XS =L XS X YL, XIS . Let H be
a g x5 test matrix of rank g. Suppose that the total number
of individuals is N. By Graybill,?' Chapter 6, the test statistic
of a hypothesis Hu=0 is non-central F(q, N-S5) defined by

_ (H'HXS'X) 'H) 'Hg) N S
YRl oS IX(XE X)) X )y g

The non-centrality parameter of the test statistic F can be
calculated by 1 = (Hu)' [H[X'S 'X] 'H*] 'Hp If the data are
composed of n individuals of a population, Fan and Xiong'*
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worked out the non-centrality parameters to test if there are
allele substitution and/or dominant effects and LDs between
the markers and the major gene locus. In the following, we
discuss a situation that the data are composed of both indi-
vidual population data and family data.

Suppose that there are n individuals of a population, and n
is sufficiently large. For each y; of the n individuals, Z;=¢* and
Xi=(1 Xa; XBi Zai ZBi), i=1, 2,---, n. From formulas in Fan and
Xiong,'* Appendix A and Appendix B, we may show that

1 n 1 n § 1 .
EZ:X?E,» X = n—azgljxixi ~ —diag(1,Va, Vo), (5)
i= i=

where V, and Vp are additive and dominant variance-covar-
iance matrices given in (2).

Secondly, suppose that there are m trio families, and m is
sufficiently large. A trio family is composed of both parents
and a single child. Notice that the means of x,;, xp;, z4; and
zp; are 0. Let K¢ =(xar Xgr Zar zp) and Ky, =(Xam XBm Zam Zpm)-
We show in Appendix A that the covariance matrix
between parents and their offspring is

T _ T _ VA/Z OZ
E K:iK; = E KK = ( o Oz)’ (6)

where Ki=(Xs1 Xp1 Za1 Zp1) and O, is zero 2 x 2 matrix. For
each of the trio families, the variance-covariance X; is a
3 x 3 matrix whose inverse is

: 1 1 Zp% péz Po
WA e 0 b ) 0

Po Po

Using equations (5), (6), and (7), we show in Appendix B

1 n+m 1
=3 X% Xir
i=nt1 (1 2p5)0
3 4p, 0 0 (8)
0 (3 2py 203)Va 0
0 0 (3 20)Vp

Thirdly, suppose that there are k nuclear families each of
them has both parents and two offspring, and the correla-
tion of the two offspring is p;,. Assume that k is
sufficiently large. For each family, the variance - covariance
¥; is a 4 x4 matrix whose inverse is

5 l= %
1+ 2Cp, 2Cpy C C
2Cpy 1+ 2Cp C C 9)
¢ C A At |
C C Clpiz 203  C(L 2p3)

po(1 pi12) po(l pi2)

where C=po(1 p12)/[(1 208)° (p12 2p%)°]. In Appen-
dix C, we show that the covariance matrix between two
offspring is



T Va/2 O
E(xa1XB1Z41281)" (Xa2 XB2Za2ZB2) = ( Sé VD;4)' (10)

Using equations (5), (6), (9) and (10), we show in Appendix
D that

1 n+m+k
= Y X%, X ~ diag(d, daaVa, dasVp) /o®, (1)

i=n+m+1

where the constants are given by di; =2[1+ 4Cp,
4C +C/pol,dzz = 2+ 4C(py 1) + C(2 p1z 2p5)/[po(1
p12)), das = 2(1+2Cpo) + C4(1 203) (p12 208)1/[2p0(1
p12)]- Combine the n individuals, m trio families, and k
families with two offspring. Define a; =n+m(1 2p3) !
(3 4pg) + kdn, az =n+m(l 203 (3 2py 2p3)+
kdy, a3 =n+m(1  2p3) '(3  2p2) + kdss. Then equations
(5), (8) and (11) lead to

n+m-+k

ST X% X~ diag(ay,aVa,azVp) /o, (12)
i=1

To test if there are additive and dominant effects, we may
test the hypothesis Hyp a4t aa=0p=0,=05=0. Then the test
matrix H is defined by

01000
00100
H_OOOIO
00 0 01

Let us denote the corresponding F-test statistic by Fag 44,
and the non-centrality parameter by 1,5 .. Then we have
from (3), (4), and (12) that

1 o 6,
AAB.ad R = [az(aAaB)VA (O;‘) +az(6468)Vp <62)}

1
== [Zazo@ [PoPpD%  2DaqDasDap + PaPaDgy)/
(PaPaPyPs  D3p) + asd3[PaPiDh,  2D%0D3pDdg

+PEADY)/(PRPAFERE D)

1
= {“zﬂﬁa [Riq 2RaqRasRqs + Rgpl(1  Rip)
+ ‘13‘7§d [Rf\Q ZR%\QR/ZxBRéB + RéBV(l R;lus)} .

Assume that the two markers A and B are in linkage equili-
brium, then D,43=0. Moreover, assume that the trait locus Q
is in LD with marker A but not with marker B, then D=0
and Dag#0. Then Jiapas ~ [1/0%]|az0%R3, +a3a§dR;§Q],
which only involves marker A and can be written as A4 qq.
Correspondingly, we denote the F-test statistic by Fj 4.
Similarly, Jaq ~ [az/0%|03,R5, is the non-centrality para-
meter of a test statistic F, ,. To test the other hypotheses,
we may get the non-centrality parameters in a similar way
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by taking appropriate test matrices H. To test if there is
dominant effect, we may test the hypothesis Hap 4: 04=05=0.
The non-centrality parameter is Jupq ~ 4 ofd [RﬁQ
2R3 RipR3; + REpl/(1 Rip). To test if there is an additive
or substitution effect, we may test the hypothesis
Hypq : 04 = ap = 0. The non-centrality parameter is 145, ~
%om[Riq  2RaqRaRos + R3pl/(1  R3p). The corresponding
F-test statistic is denoted by Fup 4.

Non-centrality parameters of linkage studies
Consider a nuclear family with k children and both parents.
Under the null hypothesis of no linkage between the trait
locus and markers, the correlation of each sib-pair is

Uéa 62

2 2
gd | 9Ga | 9Gd
= 84 | ZGa | ZGd
PN =552 + 402 202 402

The expected log-likelihood is E(2Lnw) = (k+2)
llog(2na?)+1] log[ (1 2p3)+(k )(py 2p3)(1 py)* ']
Under the alternative hypothesis of linkage between the
trait locus and marker A, the correlation between a sib-pair
is Ci = Cov(y1,y2lma = i/2) /0% = (05, + 05g)P(nq=1|ma = 1/2)/
0? + % P(nq=1/2|na=i/2)/0% + [0%,/2 + 02,/4]/0?,i=0,1, 2.
From Haseman and Elston,?? Table IV, we have

Ca = (0% + G2VA + 02Wall a) + 02 /2 + 0%4/4) /?

Cr= (0% +a2Wa(l ) +0R[l 2041 vy)]/2
+0¢a/2 + 054/4]/0°

Co = [0+ a2 W) +o2ba (1 Ya)+0%/2+0%4/4) /0.

(13)

The expected log-likelihood under the alternative hypoth-
esis of linkage is

E(ZLmndom,A) = (k + 2) [log(znaz) + 1]
Z Z P(m124) - P(mx 144)-
24 T 1kA
1 0 Po Po Po
0 1 Po Po Po
1 4 Po  Po 1 CZMZA szm
0g det Po  Po CZﬂzm 1 CankA ’
Po  Po CZﬂklA CZ?TkZA T 1

where P(TC,‘]'AZO)ZP(TIifAzl):l/‘} and P(n,,Azl/Z):l/Z From
Stuart and Ord,”° the non-centrality parameter for linkage
of the nuclear family is equal to Aiukage A=E(2Lrandom,a) —

EQLyuy). If k=2, it can be shown that jmagea =
log[1  4pf  pk + 4pfpn]  TioP(mza =i/2)log[l 4pf
C? + 4p3C;)).
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Under the alternative hypothesis of linkage between the
trait locus and markers A and B, the correlation between a
sib-pair is given by for i, j=0, 1, 2

Cij = Cov(y1,y2|ni2a = i/2, 7125 = j/2)/ 0>
= |(05, + 05)P(m12q = 1|miz2a = i/2, 7128 = j/2)
a2 (14)

+%HP(TC12Q =1/2|n124 =i/2,m128 =j/2)

+ Géa/z + Jéd/4 /0-2'

To calculate Cy; , we need to calculate the joint distribution
of mi24, M12g and myzp Of a sib-pair under the alternative
hypothesis of linkage. Assume that there is no interference
for disjoint regions of the chromosome. Then we have

P(m124 = ia, m12q = iq, m128 = i)

= P(mi24 = ia, m12q = iQ)P(m128 = ip|M124 = ia, M12q = iq)

= P(mi24 = ia|m12q = iq)P(m12q = iQ)P(m128 = ip|m12q = iq).
(15)

From Haseman and Elston,?* Table IV, we may construct
the joint distribution of m12q, 7124 and 7.5 by relation
(15), and the results are presented in Table 3 of Fan.!”
Based on the results, we can calculate Cy, i, j=0, 1, 2, which
are given in Appendix D of Fan.!” The expected log-likeli-
hood wunder the alternative hypothesis of linkage is

EQ2Lyandom, ap)=— (k+2)[log(2n6*)+1] -, Z., S
an,w P(ﬂle)P(nlzB) P(nk—l,kA) P(Tfk—l,kB)
1 0 Po Po e Po
0 1 Po Po T Po
) d Po  Po 1 CZ?HZA,ZMZB szm 2m1kp
0g det Po  Po CZszm-Zszw 1 CZszkA 2T kB
Po  Po CZﬂklA.Zﬂkm CanzA,Zﬂkzg T 1

where P(n;p=0)=P(n;;p=1)=1/4 and P(m;;p=1/2)=1/2 such as
those for marker A. From Stuart and Ord®° the non-central-
ity parameter for linkage of the nuclear family is equal to
;Llinkage,AB:E(ZLramlom,AB)_E(ZLNMII)' If k:2: it can be shown
that  Zjinkageas = 10g[1  4p3  p% + 4p3py] Ziz,,':o P(m124 =
i/2)P(mi2p = j/2)log[l  4p5  CF +4p5Ci).

Power calculation and comparison
Let us denote heritability by h? which is defined by
h? = 2,/0%. In the power calculations, we take the additive
polygenic variance ¢2, = 0.10, polygenic dominant variance
aéd = 0.05, the equal allele frequencies Py=q;=Pp=0.5 at the
two markers A and B, and the QTL Q. Moreover, suppose
that py1=a, p2=p21=d and pzy=-a.

Suppose that the map distance 145 between marker A and
marker B is known. Under the assumption of no interfer-
ence, we may calculate the recombination fraction by
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Haldane’s map function 04p=[1-exp(-24,p5)]/2. Similarly,
we may calculate the recombination fractions 044 and 0qp
by the map distances Z,q and Zqgg. Assume that marker A
and marker B are in linkage equilibrium, i.e., D,p=0, the
genetic distances /45=5 cM, A4q=4qs=2.5 cM, and the herit-
ability h?=0.25. Suppose we have a sample with #=100
individuals, m=30 trio families, and k=20 nuclear families
with two offspring. Assume that the IBD proportions shared
by the two offspring in the k=20 families at both markers A
and B are mu= n5=0.5, and the probability of sharing two
alleles IBD at markers A and B are A,=Ap=0.5. Figure 1
shows the power of the test statistics Fapaa, Fapar Faad
and F,, against the disequilibrium coefficient D, when
D@p=0.15 for a mode of dominant inheritance with
a=d=1.0, and a mode of recessive inheritance with a=1.0,
d=-0.5, respectively. Several features are interesting in the
two graphs of Figure 1. First, the power of Fag s and Fup 4
are higher than that of F, ,; and F, ,. Hence, the regression
mapping which uses two markers A and B has its advantage
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over the one marker mapping which only uses one marker
A or B. Second, the statistic F4p,s has higher power than
that of F4p, and the statistic F4 5, has higher power than
that of F,,. Thus, excluding the dominant variance from
the analysis when it does exist would lose power. Third,
as expected, when D,4,=0 the power to detect LD using only
marker A is minimal. More interestingly, when D,,=0.15
the power is still higher using the flanking two markers
than using only marker A.
Figure 2 shows the power of the test statistics Fag a4, Fap,ar
Fa a4 and F, , against the heritability #*° when D,45=0.10 and
D4q=Dqp=0.15 for a mode of dominant inheritance with
a=d=1.0, and a mode of recessive inheritance with a=1.0,
d=-0.5, respectively. The other parameters are the same as
those of Figure 1. Among the features observed in Figure
1, the power is reasonably high when the heritability h? is
bigger than 0.15. To compare the power of population
based and family based methods, Figure 3 shows the power
of the test statistics Fup 44 and F4p, for a mode of dominant
inheritance with a=d=1.0, and a mode of recessive inheri-
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against heritability h* at 0.01 significant level, when g;=Px=Ps=
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for a mode of dominant inheritance a=d=1.0, and a mode of
recessive inheritance a=1.0, d=-0.5, respectively.
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tance with a=1.0, d=-0.5, respectively. For Figure 3,
population data contain n=252 individuals, but no family
data (m=k=0). For dominant inheritance of Figure 3, the
data contain m=84 trio families (n=k=0). For recessive
inheritance of Figure 3, the data contain k=63 nuclear
families each has two offspring (n=m=0). Notice that m=84
or k=63 family data contain 252 individuals, and thus the
number of individuals is the same as that of the population
data. We can see that population based method is more
powerful than the family based method for the same
number of individuals.

In a population, the LD can exist due to mutations at the
trait locus. In the absence of tight linkage between the trait
locus and a marker, the recombination between the marker
locus and the trait locus can rapidly dissipate the disequili-
brium from generation to generation. Denote the frequency
of haplotype AQ at the generation when the mutations
occur by P(AQ)(0). Then LD coefficient is Duqo(0)=
P(AQ)(0)-q1P4 for the generation when the mutations
occur. For the following generations, the disequilibrium
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n=m=0, k=63. Other parameters are the same as those of Figure

2.

European Journal of Human Genetics



Linkage and association mapping of QTL

R Fan and M Xiong

132

coefficient is reduced by a factor 1—0,q, in each genera-
tion.?* Suppose that the mutation is already T generation
old. Then the LD coefficient is Daq(T)=Daq(0)(1-040)"
Similarly, the other LD coefficients are D,p(T)=D4p(0)(1-
045)" and Dop(T)=Dqp(0)(1-0gp)".

Assume that the map distance between marker A and
marker B is /45=5 ¢M, and the other parameters are given
by D,p(0)=0.20,D44(0)=Dq5(0)=0.25,

h?=0.25, Iap=5 cM,

on the power, Figure 5 shows the power curves against the
position of markers. In the Figure, the QTL locates at 15 cM
which is flanked by two markers A and B. One marker is
one the right-hand side of the QTL, and the other is on
the left-hand side with equal distance to the QTL. The
power decreases quickly when the age of the mutation
increases. For a mutation which is 30 generations old, one
should expect very low power if the markers locate 5 cM

n=100, m=30, k=20, T=30, ny= np=0.5, Ay=Ap=0.25. Figure
4 shows the power of the test statistics Fapaq, Fap.ar Fa.adr
and F, , against the recombination fraction 0,q for a mode
of dominant inheritance with a=d=1.0, and a mode of reces-
sive inheritance with a=1.0, d=-0.5, respectively. We can
see that the power curves of F4p,s and Fup, are very high,
although the power curves of F, ,; and F,, decrease very
rapidly as the recombination fraction 0, increases. Hence,
high resolution LD mappings have advantage to do fine
gene mappings, and appropriate for the dense marker maps
such as single nucleotide polymorphisms on human
genome. To investigate the effect of the age of the mutation
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away from the QTL.

To explore the linkage interval mapping, we take a
sample of k=250 nuclear families each has two offspring.
Multiplying Zjinkage,a and Ajpkageap Dy Kk, we may calculate
the non-centrality parameters for the linkage mapping
using marker A and the linkage interval mapping using
markers A and B. Moreover, assume that the genetic
distances are 1,5=30 cM, and A,q=lgp=15 M, i.e., the QTL
Q is right in the middle between markers A and B. Figure
6 gives power curves of linkage interval mapping by
markers A and B, and linkage mapping by marker A against
heritability #* for a mode of dominant inheritance with
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Figure 4 Power curves of the test statistics Fagaq, Faga Faad

and F, 4 against the recombination fraction 64q at 0.01 signifi-
cant level, when q=P;=P=0.50, D45(0)=0.20, Dsq(0)=Dq5(0)=
0.25, h?=0.25, J.45=5 cM, T=30, n=100, m=30, k=20, m,=m5=0.5,
A4=Ap=0.25, 0, = 0.10, 0%, = 0.05 for a mode of dominant

inheritance a=d=1.0, and a mode of recessive inheritance a=1.0,
d=-0.5, respectively.
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Figure 5 Power curves of the test statistics Fag 44 against the
position of markers at 0.01 significant level for a mode of
dominant inheritance a=d=1.0, and a mode of recessive inheri-
tance a=1.0, d=-0.5, respectively. The QTL locates at 15 cm
which is flanked by two markers A and B. Here the mutation age

T=20, 30, 40, 60, and the other parameters are the same as
those in Figure 4.
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Figure 6 Power curves of the linkage interval mapping by
markers A and B, and linkage mapping by marker A against the
herltablllty hz, when q1=PA=PB=O.50, iAB=3O c™m, ;LAQ=).QB=

15 eM, k=250, 0%, = 0.10, 0%, = 0.05, at 0.05 significant level
for a mode of dominant inheritance a=d=1.0, and a mode of
recessive inheritance a=1.0, d=-0.5, respectively.

a=d=1.0, and a mode of recessive inheritance with a=1.0,
d=-0.5, respectively. It is clear that the power of interval
linkage mapping using both markers A and B is higher than
that of linkage mapping using only one marker A.

Discussion

In this paper, we investigate variance component models of
both high resolution LD mapping and linkage analysis for
QTL. The models are based on family pedigree and popula-
tion data. We consider likelihoods which utilizes flanking
marker information. The likelihoods jointly include recom-
bination fractions, LD coefficients, the average allele
substitution effect and allele dominant effect as parameters.
The linkage parameters are contained in the variance-covar-
iance matrix. The parameters of LD and gene effects are
contained in the regression coefficients.®?'"'> The model
simultaneously takes care of the linkage, LD and the effects
of the putative trait locus Q, and hence clearly demon-
strates that linkage analysis and LD mapping are
complimentary, not exclusive, methods for QTL mapping.
The family data which have at least two offspring contain

Linkage and association mapping of QTL
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information for both linkage and association, and popula-
tion data and trio family data which have two parents
and only one offspring contain information for association.
By combining the family and population data in the analy-
sis, one may expect to get better results than that by
analysing them separately.

Linkage analysis can localize genetic trait loci in broad
chromosome regions of a few cM (<10 cM), and is less
sensitive to population admixture than LD mapping. In
practice, one may carry out linkage analysis as a first step
to obtain prior suggestive linkage based on a sparse marker
map. By performing linkage interval mappings, one may
get higher power than that of using only one marker. With
prior linkage in hand, LD mapping can be used to get high
resolution of the genetic trait loci based on a dense marker
map. We have shown that models of high resolution LD
mappings using two flanking markers have higher power
than that of models of using only one marker. Hence, high
resolution LD mappings have the advantages to do fine
gene mappings, and appropriate for the dense marker maps
such as SNPs on human genome. Performing both LD
mapping and linkage analysis has potential to avoid false
positives due to population history or environmental
effects. In the meantime, it takes the advantage of high
resolution of LD mapping.

The power of association study depends on the existence
of LD between trait locus and markers. In the absence of
LD, the power of LD mappings is very low. To increase
the probability of detecting LD, one may need to carry
out suitable design for a genetic study.?* It is well known
that the level of LD is heavily affected by population
stratification. On the one hand, the family based methods
are less likely influenced by population stratification than
those of population data based methods. On the other
hand, a family based association study is less powerful than
that of population based study for the same number of
individuals. Combining the family and population data,
one may expect more information, and take the advantage
of population data and family data. More investigation is
needed to explore the population stratification effect on
high resolution LD mapping of QTL, and to develop robust
methods to identify association between multiple markers
and QTL in the presence of population stratification.

To our knowledge, there is not much research on statisti-
cal analysis about high resolution LD mapping of QTL.
Using only one bi-allelic marker, the statistical analysis of
LD mapping has been studied by a few colleagues.®~'* Rela-
tively, multipoint linkage mapping has been studied more
intensively.'®!%25 It is our hope that the current research
may shed more light on the high resolution association
study, and stimulate more interests to utilize the advantage
of LD mapping in fine resolution of genetic studies. In the
Section of power calculation and comparison, we mainly
explore a set of scenarios of LD mapping. For several sets
of parameters, we compare the power of four test statistics
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for LD mapping. Moreover, we compare the power of LD
mapping of using population data and family data. We also
investigate the effect of mutation age on the power. For
linkage mapping, we only include one figure to make power
comparison of linkage interval mapping using two markers
with linkage mapping using only one marker.” This reflects
the need for more research on high resolution LD mapping
of QTL, since the research on linkage interval/multipoint
mapping is more mature.

In this paper, we treat LD as a fixed effect since only two
markers are considered. In general, inference about the LD
structure in the population are desirable, and LD should be
modeled as a random effect when multiple markers/haplo-
types are used in analysis, which would need more
investigation. We assume that the data of all family
members are available. For some late-onset diseases, the
data for the parents or former family members may no
longer be available. In principle, one can use similar meth-
ods as the ones proposed in this paper to perform high
resolution LD mapping for sib-pair data of late-onset
diseases. This is an area which is of importance and needs
more research. Due to the length of this paper, we do not
pursue these issues in depth, and they will be explored in
other projects.
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Appendix A
In this Appendix, we show equation (6). Actually, we have

E[XAfXAl] = ZPuE[XAl,Af = AA] + (Pu PA)E[XAl,Af = Aa]
ZPAE[XAI,Af = aa]

—2p, [ZPaPA+(P,, Pa)Pa ZPA-O]Pg
2P, [zpa.o+(1>a Pa)Pa szPa]Pg
+(Pa Pa)[2PaPa+ (Pa Pa)(Pa+Pa) 2PaPd]
(ZPAPa/Z)
=2P,PaP5 + (P, Pa)(Pa Pa)PaPa
2P4( PsP2) = P,Py

E[XAfXBﬂ = ZPaE[Xgl,Af = AA} + (Pa PA)E[Xgl,Af = Aa]
ZPAE[XBl,Af = aa]

—2p, [ZPb P(AB)P, Py + (P, Py)-
(P(AB)PA P, + P(AD)P; - PB) 2Py - P(Ab)P, - P,,]
+(Pa Pa) [zph : (P(AB)Pa Py + P(aB)P4 .PB)
+ (P, Pp)- (P(AB)P[, Py + P(AD)P, - Py
+P(aB)P4 - Py + P(ab)P, - PB)
2P - (P(Ab)Pu -Py + P(ab)P, -Ph)]
2P, [zpb -P(aB)P, - Py
+ (P, Pp)- (P(aB)Pa - Py + P(ab)P, -PB)
2Py - P(ab)P, - Pb]
— 2P,[P(AB)P4P, P(Ab)P4Ps]
+(Pa Pa)[P(AB)P.Py + P(aB)P4Py
P(Ab)P.Py  P(ab)P4P5] 2PA[P(aB)P.P,
P(ab)P,Ps]
— P(AB)P,P, P(aB)PsP, P(Ab)P,Pg
=+ P((lb)PAPB = Dyp
E[XAfZAl] = ZPHE[ZAhAf = AA] + (Pa PA)E[ZAl,Af = Aa]
ZPAE[ZAl,Af = (1(1}
=2p, [ P2Py + (PaPa)Ps  P?- 0] P2
2P| P2-0+PuPsPa  PAP|P?
(P, PA)[ P2P, + PyPa(Py + Py)
PAP,|2P4P4/2 = 0
E[XAfZBl] = ZPuE[ZBhAf = AA] + (Pa PA)E[ZBhAf = Aa]
ZPAE[Zgl,Af = aa]
- ZPu[ P2 . P(AB)P, - Py + PyPy-
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(P(AB)PA -Py + P(Ab)P4 -PB> P2 - P(Ab)P4 ~P,,]

+(Pa Pa) [ P2 (P(AB)PH Py + P(aB)Ps - PB)

+ PPy - (P(AB)P, - Py + P(Ab)P, - Py + P(aB)Py - Py

+P(ab)P, - PB) P2 (P(Ab)Pa Py + P(ab)P, - Pb)}
2P, [ P2 . P(aB)P, - Py

4 PPy - (P(aB)Pa -Py + P(ab)P, .PB)

P2 . P(ab)P, -Ph] —0.

Similarly, we may show the other terms in equation (6).

Appendix B

By equations (6), (7), and large number theory, we can
show the approximation (8). For instance, the approxima-
tion for element on the second row and the second
column is

n+m
1 T
— E (Xafi Xami Xa1)%; " (Xag  Xami  Xa1i)
i=m+1
1 1 n+m

:m% Z [((1 PO)Xafi + PGXami pOXA1i>XAﬁ
0 i=n+1

+ (P%XAﬁ+(1 P8 )X Ami pOXA1i>XAmi

+ ( PoXAfi  PoXAmi +XA1i>XA1i]
1 2
~ T e [2(1 p2)2PPs  4poPaPs + ZPaPA}
_ 2P,PA(3  2py 203)
(1 2p%)c? ’

For the element on the forth row and the forth column, we
have

n+m
1 T
pn E (Zafi Zami Zai))S; ' Zaf Zami Zaui)
i=m+1
1 1"+"’l

= — (1 p3)zafi + PoZami POZAlz')ZAﬁ
(1 2/)%)02 mi:rH—l

+ (ngAﬁ +(1 pd)zami pOZAli)ZAmi

P2p2(3  2p3
+( PoZafi p()ZAmi+ZAli)ZA1i] %W-
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Appendix C
To prove equation (10), we first have
E(xa1xa2) = PAE[xa1xaz|Ar = AA, A,y = AA]
+ 2P%(2P4Pa)E[Xa1X42|Ar = AA, Ay = Aad]
+ ZPE\Pz%E[XAlXAﬂAf =AA, A,y = aq]
+ (ZPAPH)ZE[XA1XA2|Af =Aa,Ap = Ad
+ 2P3(2PaPo)E[xa1Xa2|Af = Aa, Ay = aa]
+ PiE[Xa1x02]Af = aa, Ay, = aal
2
— PA(4P2) + 4P3Pu[2Pu/2 + (Pa Pa)/2]
+2P4P2[P,  Pal* + (2PaPa)*
2
PPa/4 +(Pa Pa)/2 2Py /4]

+4P%P, [(Pa Pa)/2 2P, /z]2 + P4 (4P?)

= P4P,

E(xa1242) = PiE[Xa1202|Ar = AA, Ay = AA]

+ 2P%(2P4Pa)E[xXa1242|Af = AA, A = Ad]
+ 2P3P2E[x41242|Af = AA, A,y = adl
+ (2PsP,)*E[xa1242|Ar = Ad, Ay = Ad]
+ 2P2(2P4P,)E[xa1242|Af = Aa, Ay = aa
+ P2E[X41242|Af = aa, A,y = aa)

=P4( 2P3) +4P3P,[2P,/2 4+ (P, Pa)/2]
[ P22+ P,Pa/2] +2P3P2[P, Pa|P,Pa
+ (2PAPL[2Pa/4 + (Pa Pa)/2 2Pa/4]
[ P2/4+ P,Py/2 P} /4]
+4P3P, [(Pa Pa)/2 2P, /2] [PaPA /2 P2 /2]
+P}2P3) =0

E(za12a2) = PAE[za1242|Ar = AA, A,y = AA]
+ 2P3(2P4Pa)E[za1242|Ar = AA, A,y = Aal
+ 2P P2E[zp1 22| Af = AA, Ay = aal
+ (2P4P.)*Eza1za2|Ar = Aa, Ay = Ad
+ 2P2(2PaP,)E[za1242|Af = Aa, Ay, = aa]
+P2E[ZA12A2|Af =aa,A;; = ad|
2
= PA( P2 +4PiPa| P2/2+ PuPs/2]
+ 2P%P2[P,P4)”
2 p2 2 1412
+(2PaPa)?[ P2/4+PaPaj2 P54
: 2
+4P3Ps[PaPa/2 P/2) 4+ PA( P2)?
= P2p% /4.
Similarly, we may show that E(xpixp2) = P,Ps, E (xp1252) =

0,E(zp1zp2) = P2P%/4. To show the other terms of (10), we first
calculate the joint probabilities P(44,B;), in which the first
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offspring’s genotype is A; at marker A and the second
offspring’s genotype is B, at marker B, A;c€{AA,Aa, aal},
B,€{BB, Bb, bb}.We need to consider nine possible phases
{AA, Aa, aa} x {BB, Bb, bb} for each parent. At the first glance,
one needs to consider 9x9 possible matings to calculate
P(A4,B;). However, many matings do not lead to specific
genotypes (A;,B;) of a sib pair. This eliminates many terms
and reduces the amount of calculations. For instance, a
mating of (Ar =AA, Br =BB) x (A,,=AA, B,,=BB) only results
offspring with genotype (AA,BB). Then, we have
P(A1 = AA,B; = BB)

= Z P(Af,Br) Z P(Aw,Bm)PJA1 = AA, B,
Ar By ApBm

= BB|(Af7Bf)7 (Am, Bm)]
— P(AB)* [P(AB)2 +2-2P(AB)P(Ab)/2 + 2 - 2P(AB)P(aB)/2
+2 [2P(AB)P(ab) -+ 2P(Ab)P(aB)]/4]
+ 2P(AB)P(Ab) [ZP(AB)P(Ab) /4
+2-2P(AB)P(aB)/4 + 2 - [2P(AB)P(ab)
+2P(Ab)P(aB)] - 1/2 -1 /4]
+ 2P(AB)P(aB) [ZP(AB)P(aB) /4 +2 - [2P(AB)P(ab)
+ 2P(Ab)P(aB)] - 1/2 -1 /4]
+ [2P(AB)P(ab) + 2P(Ab)P(aB))* - 1/4 - 1/4
= (P(AB) PaPg)*/4 + PAPgP(AB) = A%, /4 + P,PyP(AB).
(16)
Symmetrically, we may get the following three terms
P(Ay = AA, By = bb) = A4 /4 + P4P,P(Ab),
P(A, = aa,B, = BB) = A%, /4 4 P,PgP(aB), (17)
P(A, = aa, B, = bb) = A3, /4 + P,P,P(ab).

Note that P(A;=AA, B,=Bb)=P(A1=AA)—P(A1=AA, B,=BB or
bb). Hence,

P(A; = AA,B; = Bb) = A%;/2 + P(AB)P4Py, + P(Ab)P,Pp.
(18)
Similarly, we may calculate the following three terms

P(Ay = aa,B, = Bb) = AZ,/2 + P(aB)P,Py + P(ab)P,Py
P(A; = Aa,B, = BB) = A2,/2 + P(AB)P,Pg + P(aB)P,Pg
P(Ay = Aa,By =bb) = AZ,/2 + P(Ab)P,Py, + P(ab)PAP,.
(19)
Finally, we can calculate the following term using equation
a1 Zpz P(A1,B2)=1
P(Al = AH,BZ = Bb)
= A%, + P(AB)P,Py + P(Ab)P,Pg + P(aB)PAP}, + P(ab)PaPg.
(20)



Using equations (16), (17), (18), (19) and (20), we may
calculate
E[Xa1xp2] = 2P, {ZPbP[Al — AA,B, = BB
+ (P, Py)P[A; = AA,B, = Bb]
2PyP[A; = AA, By = bb]]
+(Py Py [ZP,,P[Al = Aa,B, = BB]
+ (P, Pp)P[A1 = Aa,B, = B
2PsP[A; = Aa,B, = bb]]
2P, [zpbp[A1 = aa, B, = BB]
+ (P, Py)P|A; = aa, B, = Bb]
2PyP[A; = aa, By = bb]] = Dap.

Similarly, we may get E[xa1zp2] =0, E[za1252] :Df‘B/AI. By
symmetric property, we may calculate the remaining terms
in (10).

Appendix D

Let ), ! be the matrix given by (9). To show the approxi-
mation of (11), we notice that d;; can be calculated by
di=0¢>1 1 1 1) ¥,'1 1 1 1)". The element on
the second row and the second column of approximation
(11) can be calculated by

1 n+m+k .
- Z (Xafi Xami Xati Xa2)D; '(Xap Xami Xat Xazi)
i=n+m+1
11 n+m-+k
P Z [((1+2CPO)XAﬁ+2Cﬂ0XAmi Cxati CXA2i>XAﬁ
i=n+m+1
+ (ZCPOXAﬁ + (14 2Cpg)xami  Cxaui CXAZi)XAmi
C(1 2p2
+< Cxafi CXAmi‘i‘MXAli
po(1 p12)
C(p1z 2/’(2))
X2 ) Xa1i
po(1 p12) Al) Al
C 2p2
+( Cxai Cxami (P(llz pp()))XAlz
12
C(1 2p})
1 XA2i | XA2i
po(l p12) 1) l]

Linkage and association mapping of QTL
R Fan and M Xiong

1
~ [((1 4 2Cpg)2PaPs +0  CPPs CPaPA)
n (0 +(1+2Cpy)2PPs  CP,Py CP PA)
+ ( CPpy PPy s S 200 5 b

po(1 p12)
C 202
(P12 pO)PaPA)
po(1  p12)
C(p1z ZP(Z))
po(1 p12)

PA)] = 2P,Padnz /5>,

+( CP.Py CP.P4

2
L0 20),,
po(l p12)

PPy

Similarly, the element on the forth row and the forth
column of approximation (11) is

1 " .
X Z ZAf Zami Zavi Za2i); (ZAf Zami Zavi Za2i)
i=
1 n+m+k
= _Z (1 + ZCP())ZAﬁ + ZCPOZAWH CZAU CZAz,')ZAﬁ
i=n+m+1

+m+
17
k
( Cpozafi + (1 +2Cpg)zami  Czai CZAZi)ZAmi

C(A  2p3)
Cz CZami + ZAli
A A po(1 p12) At
Clp12 2/’0) ) )
Clpy1z 2/’%)
+< Czap Czpmi mlmz
C(1  2p3)
+p0(1 P12 )ZA21>ZA21]
2 22 C(1 2,00)
N?[(l""ch())PaPA—"_ <,00(1 )
C 202
7[)(0”(112 plpf))”ﬁ”f‘/‘*ﬂ = P2P2dys/c”.

The other terms of approximation (11) can be calculated in
a similar manner.
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