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In this paper, we investigate variance component models of both linkage analysis and high resolution
linkage disequilibrium (LD) mapping for quantitative trait loci (QTL). The models are based on both
family pedigree and population data. We consider likelihoods which utilize flanking marker information,
and carry out an analysis of model building and parameter estimations. The likelihoods jointly include
recombination fractions, LD coefficients, the average allele substitution effect and allele dominant effect
as parameters. Hence, the model simultaneously takes care of the linkage, LD or association and the
effects of the putative trait locus. The models clearly demonstrate that linkage analysis and LD mapping
are complementary, not exclusive, methods for QTL mapping. By power calculations and comparisons,
we show the advantages of the proposed method: (1) population data can provide information for LD
mapping, and family pedigree data can provide information for both linkage analysis and LD mapping;
(2) using family pedigree data and a sparse marker map, one may investigate the prior suggestive linkage
between trait locus and markers to obtain low resolution of the trait loci, because linkage analysis can
locate a broad candidate region; (3) with the prior knowledge of suggestive linkage from linkage
analysis, both population and family pedigree data can be used simultaneously in high resolution LD
mapping based on a dense marker map, since LD mapping can increase the resolution for candidate
regions; (4) models of high resolution LD mappings using two flanking markers have higher power than
that of models of using only one marker in the analysis; (5) excluding the dominant variance from the
analysis when it does exist would lose power; (6) by performing linkage interval mappings, one may get
higher power than by using only one marker in the analysis.
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Introduction
Twenty years ago, variations in human DNA were recog-

nized as genetic markers in linkage study.1 After that,

the advances in molecular biology and computational

technology have led to mapping several human inher-

ited disease genes. Using restriction fragment length

polymorphism (RFLP) markers and polymorphic micro-

satellite loci, linkage analysis and positional cloning

have been used successfully in mapping the chromosome

locations of Mendelian disease genes. The success mainly

depends on one premise that the disease genes of

Mendelian traits have a large effect on the phenotypes.2

In fact, there is usually a one-to-one correspondence

between disease gene genotypes and the disease pheno-

type for Mendelian traits. Moreover, the correlations
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between genotypes and phenotype of Mendelian traits

are strong. Given sufficient family data, Mendelian traits

can be mapped with high probability by linkage analy-

sis.

With the encouragement of successful mapping Mende-

lian trait genes, there has been growing interests and

endeavors in the study of complex traits such as asthma

and diabetes. For complex diseases, the inheritance

patterns and phenotype definitions as with genetic etiol-

ogy are much more complex. The trait/affection status is

usually a continuous variable.3 The mapping of complex

disease genes is much harder. Novel statistical methods

such as both linkage analysis and linkage disequilibrium

(LD) mapping or association study are needed in dissecting

complex traits. As very dense marker maps such as single

nucleotide polymorphism (SNP) are available,4 both link-

age analysis and association study are utilized

simultaneously for mapping complex disease loci.5,6

Almasy et al7 and Fulker et al8 proposed to use combined

linkage and association analysis for quantitative trait loci

(QTL). Sham et al9 studied the power of linkage versus

association analysis of quantitative traits by analytically

calculating non-centrality parameters of test statistics.

Abecasis et al10 – 12 proposed test statistics of association

studies for quantitative traits in nuclear families, general

pedigrees, and selected samples. Cardon13 studied a sib-

pair regression model of LD for quantitative traits. All

these researches concentrated on family data which

include sib-pairs, and used only one marker in analysis.

In Fan and Xiong,14 we proposed a linear regression meth-

od of high resolution mapping of quantitative trait loci by

LD mapping analysis. The method is based on population

data. Using two flanking markers, the regression models

have higher power than that of models using only one

marker.14

It is well-known that family pedigree data can be used in

both linkage analysis and association study, and population

data can be used in association study. Hence, it is necessary

to consider a method to combine both population data and

family pedigree data in the analysis. In this paper, we

propose to perform both linkage analysis and high resolu-

tion LD mapping for QTL based on combined family and

population data. Linkage interval mapping is based on

family data, and LD mapping is based on both family pedi-

gree and population data. Based on variance component

models, we construct likelihood to analyse family and

population data in Section of Models. Then, we discuss

the parameter estimations and regression coefficients. The

linkage information, i.e., recombination fractions, is

contained in the variance-covariance matrix, and the asso-

ciation information, i.e., the LD coefficients, is contained

in the mean parameters or the regression coefficients. We

calculate the non-centrality parameters for association

study and linkage analysis, respectively. Using the non-

centrality parameters, we perform power calculations and

comparisons. The technical details to calculate the regres-

sion coefficients, parameters, non-centrality parameters are

left in the Appendixes.

Models
Consider a quantitative trait locus Q which has two alleles

Q1 and Q2. Suppose that the allele frequencies of Q1 and

Q2 are q1 and q2, respectively. Assume that two markers A

and B flank the trait locus Q in an order of AQB. Marker

A has two alleles A and a with frequencies PA and Pa, respec-

tively. Marker B has two alleles B and b with frequencies PB

and Pb, respectively. For a nuclear family of k children and

two parents, let us denote their quantitative traits by a

vector y=(yf, ym, y1, × × × , yk)
t, genotypes at marker A by a

vector (Af,Am,A1, × × ×, Ak)
t, and genotypes at marker B by a

vector (Bf,Bm,B1,× × ×, Bk)
t. Here yf is the trait value of the

father, Af is the genotype of the father at marker A, and

Bf is the genotype of the father at marker B. Other nota-

tions are defined, similarly, for the mother with subscript

m and for the i-th child with subscript i. The log-likelihood

is defined by L ¼ kþ2
2 logð2pÞ 1

2 logj�j 1
2 ðy XmÞt� 1

ðy XmÞ. The notations of the log-likelihood are defined

as follows. For the mean component Xm, we consider the

following regression equation such as model (1) in Fan

and Xiong14

yi ¼ bþ !igþ xAiaA þ xBiaB þ zAi�A þ zBi�B þ Gi þ ei; ð1Þ

where b is overall mean, wi is a row vector of covariates

such as gender and age, g is a column vector of regression

coefficients for the covariates wi, Gi is polygenic effect, ei

is error term. Assume that Gi is normal Nð0;s2
GÞ, and ei is

normal Nð0;s2
e Þ. Moreover, Gi and ei are independent. xAi,

xBi, zAi and zBi are dummy variables defined by

xAi ¼
2Pa if Ai ¼ AA

Pa PA if Ai ¼ Aa

2PA if Ai ¼ aa

8<: ; zAi ¼
P2

a if Ai ¼ AA

PaPA if Ai ¼ Aa

P2
A if Ai ¼ aa

8><>: ;

xBi ¼
2Pb if Bi ¼ BB

Pb PB if Bi ¼ Bb

2PB if Bi ¼ bb

8<: ; zBi ¼
P2

b if Bi ¼ BB

PbPB if Bi ¼ Bb

P2
B if Bi ¼ bb

8><>: :

aA, aB, dA, and dB are regression coefficients of the dummy

variables xAi, xBi, zAi and zBi.

The model matrix X is defined by

X ¼

1 wf xAf xBf zAf zBf

1 wm xAm xBm zAm zBm

1 w1 xA1 xB1 zA1 zB1

..

. ..
. ..

. ..
. ..

.

1 wk xAk xBk zAk zBk

8>>>>>>><>>>>>>>:

9>>>>>>>=>>>>>>>;
¼

Xt
f

Xt
m

Xt
1

..

.

Xt
k

0BBBBBBB@

1CCCCCCCA;

and m=(b, gt, aA, aB, dA, dB)t is a vector of regression coeffi-

cients. S is a (k+2)6(k+2)
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variance-covariance matrix defined as

� ¼

1 0 r0 r0 � � � r0

0 1 r0 r0 � � � r0

r0 r0 1 r12 � � � r1k

r0 r0 r21 1 � � � r2k

..

. ..
. ..

. ..
.
� � � ..

.

r0 r0 rk1 rk2 � � � 1

0BBBBBBBBB@

1CCCCCCCCCA
s2; where s2 ¼

s2
g þ s2

G þ s2
e ;s

2
g is variance explained by the putative QTL Q,

s2
G is polygenic variance, and s2

e is error variance. The

genetic variances s2
g ¼ s2

ga þ s2
gd and s2

G ¼ s2
Ga þ s2

Gd are

decomposed into additive and dominant components.

r0 ¼ ðs2
ga þ s2

GaÞ=ð2s2Þ is correlation between parents and

children, rij ¼ ðpijQs2
ga þ�ijQs2

gd þ s2
Ga=2þ s2

Gd=4Þ=s2 is corre-

lation between the i-th child and the j-th child, pijQ is the

proportion of alleles shared identical by descent (IBD) at

QTL Q by the i-th child and the j-th child, and �ijQ is the

probability that both alleles at QTL Q shared by the i-th

child and the j-th child are IBD.

For population data, an intuitive rationale of regression

model (1) is given in Fan and Xiong14. In general, one

can construct a variance-covariance matrix for any type of

pedigree in a similar way as above. Assume that there are

two independent sub-samples of data: (1) population data:

n independent individuals; (2) family data: I – n (I4n) inde-

pendent families. Let us list the log-likelihood of the n

independent individuals by L1, × × × , Ln, and the likelihood

of the I – n families by Ln+1, × × × , LI . Then the overall log-like-

lihood is L ¼
PI

i¼1 Li. The unknown parameters are m ¼
ðb; g; aA; aB; �A; �BÞt;s2

ga;s
2
gd; s

2
Ga;s

2
Gd; and s2

e . Using the likeli-

hood ratio tests, one may test statistical significance of

the parameters of interest.

Parameter estimations and regression coefficients

Regression coefficients Let mij be the effect of genotype

QiQj, i, j=1, 2, m12 =m21. Denote the population effect mean

by m ¼ m11q2
1 þ 2m12q1q2 þ m22q2

2 and define aQ=q1m11

+(q27q1)m127q2m22, dQ=2m127m117m22. If m11=a, m12=d, and

m22= – a as in the traditional quantitative genetics,15 aQ=

a+(q2 – q1)d is the average allele substitution effect, and dQ

=2d characterizes the dominant effect. In general, one

may define a=m117(m11+m22)/2 and d=m127(m11+m22)/2. It is

well known that the additive variance s2
ga ¼ 2q1q2a2

Q and

the dominant variance s2
gd ¼ ðq1q2Þ2�2

Q . A true random

effect model describing the trait value is yi=b+wig+gi+Gi+ei,

where

gi ¼
m11 for genotype Q1Q1

m12 for genotype Q1Q2

m22 for genotype Q2Q2

8<: :

Denote LD coefficient between trait locus Q and marker A

by DAQ=P(AQ1) – q1PA, LD coefficient between trait locus Q

and marker B by DQB=P(BQ1) – q1PB, and LD coefficient

between marker A and marker B by DAB=P(AB) – PAPB. Let

the additive and dominant variance – covariance matrices

be

VA ¼
2PaPA 2DAB

2DAB 2PbPB

� �
; and VD ¼

P2
aP2

A D2
AB

D2
AB P2

bP2
B

� �
: ð2Þ

Moreover, let us denote three ratios D2
AB=ðPaPAPbPBÞ ¼

R2
AB;D

2
AQ=ðPaPAq1q2Þ ¼ R2

AQ ; and D2
QB=ðq1q2PbPBÞ ¼ R2

QB. As

in Appendix B,14 we can show that the coefficients of

regression equation (1) are given by

aA

aB

� �
¼ V 1

A

2DAQ

2DQB

� �
aQ ¼

RAQ RABRQBffiffiffiffiffiffiffiffi
PAPa

p

RQB RABRAQffiffiffiffiffiffiffiffi
PBPb

p

0@ 1A ffiffiffiffiffiffiffiffiffiffi
q1q2
p

aQ

1 R2
AB

; ð3Þ

�A

�B

� �
¼ V 1

D

D2
AQ

D2
QB

 !
�Q ¼

R2
AQ

R2
AB

R2
QB

PAPa

R2
QB

R2
AB

R2
AQ

PBPb

0B@
1CA q1q2�Q

1 R4
AB

: ð4Þ

Parameters of variance – covariances Denote the recombi-

nation fraction between trait locus Q and marker A by yAQ,

the recombination fraction between trait locus Q and marker

B by yQB, and the recombination fraction between marker A

and marker B by yAB. Fulker and Cardon16 proposed to esti-

mate the proportion pijQ of allele IBD at putative QTL Q for

a sib-pair i and j by p̂pijQ ¼ EðpijQ jpijA;pijBÞ ¼ ap þ bpApijAþ
bpBpijB where pijA and pijB are the IBD proportions of alleles

shared at the marker A and marker B, respectively. The coeffi-

cients ap, bpA and bpB are given by

bpA ¼
ð1 2yAQÞ2 ð1 2yABÞ2ð1 2yQBÞ2

1 ð1 2yABÞ4
;

bpB ¼
ð1 2yQBÞ2 ð1 2yABÞ2ð1 2yAQÞ2

1 ð1 2yABÞ4
;

ap ¼
1 bpA bpB

2
:

Let �ijA, �ijB be the probability of sharing two alleles IBD at

markers A and B for a pair of sibs, respectively. In Fan,17 we

proposed to estimate �ijQ by equation �̂�ijQ ¼ aþ bApijAþ
bBpijB þ rA�ijA þ rB�ijB. Under the assumption of no interfer-

ence, the coefficients are as follows (Fan17):

rA ¼
ð1 2yAQÞ4 ð1 2yABÞ4ð1 2yABÞ4

1 ð1 2yABÞ8
;

rB ¼
ð1 2yQBÞ4 ð1 2yAQÞ4ð1 2yABÞ4

1 ð1 2yABÞ8
;

bA ¼ bpA rA;bB ¼ bpB rB;

a ¼ ð1 cAÞ
2ð1 cBÞ

2

½cAcB þ ð1 cAÞð1 cBÞ�
2
;

where cA ¼ y2
AQ þ ð1 yAQÞ2 and cB ¼ y2

QB þ ð1 yQBÞ2: As-

suming that the positions of marker A and marker B are

known, yAB can be calculated through Haldane’s map func-

tion. Then only one of yAQ and yQB is unknown since the
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other can be calculated through Trow’s formula.18 For

general relatives i and j, Almasy and Blangero19 proposed

an algorithm to calculate the proportion pijQ of allele IBD

at putative QTL Q, and the expected probability �ijQ that

both alleles at QTL Q are IBD. In Fan,17 we derived formulas

to calculate the covariances of trait values for a few types of

relatives directly without performing matrix operations.

Association and linkage studies From equations (3) and

(4), we can see that the coefficients of LD (i.e., DAQ and

DQB) and gene effects (i.e., aQ and dQ) are contained in

the regression coefficients. Moreover, we show in the above

paragraph that the linkage parameters (i.e., recombination

fractions yAQ, yQB and yAB) are contained in the variance-

covariance matrix. Assume that markers A and B are in

LD with the trait locus Q, i.e., DAQ 6¼0,DQB6¼0. We may

simultaneously test LD of marker A and marker B with trait

locus Q, the gene substitution and dominant effects by test-

ing aA=aB=dA=dB=0. From equation (3), we may test LD of

markers A and B with the trait locus Q and the gene substi-

tution effect aQ by testing aA=aB=0. From equation (4), we

may test LD of markers A and B with the trait locus Q

and the dominant effect by testing dA=dB=0.

To test linkage, one may use the likelihood ratio test of the

log-likelihood L. Under the null hypothesis of no linkage

between the major trait locus Q and the markers, yAQ=

yQB=1/2. Under the alternative hypothesis of linkage,

yAQ6¼1/2 or yQB 6¼1/2. By comparing the difference of maxi-

mum log-likelihoods under the alternative and null

hypotheses, we may use w2 statistic to test the linkage. We will

derive analytical formulas to explore the linkage interval

mapping by the nuclear families in a similar way to Sham et

al9 according to statistical theory of likelihood ratio tests.20

Non-centrality parameters of association study

Assume that there are no covariates. Then m=(b, aA, aB, dA, dB)t.

Consider the overall log-likelihood L ¼
PI

i¼1 Li, where Li is

the log-likelihood of trait values yi of the i-th family or indi-

vidual. Let Si be the variance-covariance matrix of yi, and Xi

be its model matrix. Denote the total trait values

y ¼ ðyt
1; � � � ;yt̂t

1Þ
t, the total variance – covariance matrix by

S=diag(S1, × × × ,SI ), and the model matrix X ¼ ðXt
1; � � � ;Xt

I Þ
t.

Let b; âaA; âaB; �̂�A; �̂�B; �̂�i; �̂� be the maximum likelihood estima-

tors of b, aA, aB, dA, dB,Si, S. The estimate of m is m̂m ¼
½Xt�̂� 1X� 1Xt�̂� 1~yy ¼ ½

PI
i¼1 Xt

i �̂�
1

i Xi� 1PI
i¼1 Xt

i �̂�
1

i
~yyi. Let H be

a q65 test matrix of rank q. Suppose that the total number

of individuals is N. By Graybill,21 Chapter 6, the test statistic

of a hypothesis Hm=0 is non-central F(q, N – 5) defined by

F ¼ ðHm̂mÞt½HðXt�̂� 1XÞ 1Ht� 1ðHm̂mÞ
Yt½�̂� 1 �̂� 1XðXt�̂� 1XÞ 1Xt�̂� 1�Y

N 5

q
:

The non-centrality parameter of the test statistic F can be

calculated by l ¼ ðHmÞt½H½Xt� 1X� 1Ht� 1Hm. If the data are

composed of n individuals of a population, Fan and Xiong14

worked out the non-centrality parameters to test if there are

allele substitution and/or dominant effects and LDs between

the markers and the major gene locus. In the following, we

discuss a situation that the data are composed of both indi-

vidual population data and family data.

Suppose that there are n individuals of a population, and n

is sufficiently large. For each yi of the n individuals, Si=s
2 and

Xi=(1 xAi xBi zAi zBi), i=1, 2,× × ×, n. From formulas in Fan and

Xiong,14 Appendix A and Appendix B, we may show that

1

n

Xn

i¼1

Xt
i �

1
i Xi ¼

1

ns2

Xn

i¼1

Xt
i Xi �

1

s2
diagð1;VA;VDÞ; ð5Þ

where VA and VD are additive and dominant variance-covar-

iance matrices given in (2).

Secondly, suppose that there are m trio families, and m is

sufficiently large. A trio family is composed of both parents

and a single child. Notice that the means of xAi, xBi, zAi and

zBi are 0. Let Kf =(xAf xBf zAf zBf) and Km=(xAm xBm zAm zBm).

We show in Appendix A that the covariance matrix

between parents and their offspring is

E Kt
f K1 ¼ E Kt

mK1 ¼
VA=2 O2

O2 O2

� �
; ð6Þ

where K1=(xA1 xB1 zA1 zB1) and O2 is zero 262 matrix. For

each of the trio families, the variance – covariance Si is a

363 matrix whose inverse is

� 1
i ¼

1

ð1 2r2
0Þs2

1 r2
0 r2

0 r0

r2
0 1 r2

0 r0

r0 r0 1

0@ 1A: ð7Þ

Using equations (5), (6), and (7), we show in Appendix B

1

m

Xnþm

i¼nþ1

Xt
i �

1
i Xi �

1

ð1 2r2
0Þs2

3 4r0 0 0

0 ð3 2r0 2r2
0ÞVA 0

0 0 ð3 2r2
0ÞVD

0B@
1CA: ð8Þ

Thirdly, suppose that there are k nuclear families each of

them has both parents and two offspring, and the correla-

tion of the two offspring is r12. Assume that k is

sufficiently large. For each family, the variance – covariance

Si is a 464 matrix whose inverse is

� 1
i ¼

1

s2

1þ 2Cr0 2Cr0 C C

2Cr0 1þ 2Cr0 C C

C C
Cð1 2r2

0
Þ

r0ð1 r12Þ
Cðr12 2r2

0
Þ

r0ð1 r12Þ

C C
Cðr12 2r2

0
Þ

r0ð1 r12Þ
Cð1 2r2

0
Þ

r0ð1 r12Þ

0BBBBB@

1CCCCCA;
ð9Þ

where C ¼ r0ð1 r12Þ=½ð1 2r2
0Þ

2 ðr12 2r2
0Þ

2�. In Appen-

dix C, we show that the covariance matrix between two

offspring is
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EðxA1xB1zA1zB1ÞtðxA2 xB2zA2zB2Þ ¼
VA=2 O2

O2 VD=4

� �
: ð10Þ

Using equations (5), (6), (9) and (10), we show in Appendix

D that

1

k

Xnþmþk

i¼nþmþ1

Xt
i �

1
i Xi � diagðd11; d22VA; d44VDÞ=s2; ð11Þ

where the constants are given by d11 ¼ 2½1þ 4Cr0

4C þ C=r0�; d22 ¼ 2 þ 4Cðr0 1Þ þ Cð2 r12 2r2
0Þ=½r0ð1

r12Þ�; d44 ¼ 2ð1þ 2Cr0Þ þ C½4ð1 2r2
0Þ ðr12 2r2

0Þ�=½2r0ð1
r12Þ�: Combine the n individuals, m trio families, and k

families with two offspring. Define a1 ¼ nþmð1 2r2
0Þ

1

ð3 4r0Þ þ kd11; a2 ¼ n þ mð1 2r2
0Þ

1 ð3 2r0 2r2
0Þþ

kd22; a3 ¼ nþmð1 2r2
0Þ

1ð3 2r2
0Þ þ kd44. Then equations

(5), (8) and (11) lead to

Xnþmþk

i¼1

Xt
i �

1
i Xi � diagða1; a2VA; a3VDÞ=s2: ð12Þ

To test if there are additive and dominant effects, we may

test the hypothesis HAB,ad: aA=aB=dA=dB=0. Then the test

matrix H is defined by

H ¼

0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

0BB@
1CCA:

Let us denote the corresponding F-test statistic by FAB,ad,

and the non-centrality parameter by lAB,ad. Then we have

from (3), (4), and (12) that

lAB;ad �
1

s2

�
a2ðaAaBÞVA

aA

aB

� �
þ a3ð�A�BÞVD

�A

�B

� ��
¼ 1

s2

�
2a2a2

Q ½PbPBD2
AQ 2DAQDABDQB þ PaPAD2

QB�=

ðPaPAPbPB D2
ABÞ þ a3�

2
Q ½P2

bP2
BD4

AQ 2D2
AQD2

ABD2
QB

þ P2
aP2

AD4
QB�=ðP2

aP2
AP2

bP2
B D4

ABÞ
�

¼ 1

s2

�
a2s2

ga½R2
AQ 2RAQRABRQB þ R2

QB�ð1 R2
ABÞ

þ a3s2
gd½R4

AQ 2R2
AQR2

ABR2
QB þ R4

QB�=ð1 R4
ABÞ
�
:

Assume that the two markers A and B are in linkage equili-

brium, then DAB=0. Moreover, assume that the trait locus Q

is in LD with marker A but not with marker B, then DQB=0

and DAQ 6¼0. Then lAB;ad � ½1=s2� a2s2
gaR2

AQ þ a3s2
gdR4

AQ

h i
,

which only involves marker A and can be written as lA,ad.

Correspondingly, we denote the F-test statistic by FA,ad.

Similarly, lA;a � ½a2=s2�s2
gaR2

AQ is the non-centrality para-

meter of a test statistic FA,a. To test the other hypotheses,

we may get the non-centrality parameters in a similar way

by taking appropriate test matrices H. To test if there is

dominant effect, we may test the hypothesis HAB,d : dA=dB=0.

The non-centrality parameter is lAB;d � a3

s2 s2
gd ½R4

AQ

2R2
AQR2

ABR2
QB þ R4

QB�=ð1 R4
ABÞ. To test if there is an additive

or substitution effect, we may test the hypothesis

HAB;a : aA ¼ aB ¼ 0. The non-centrality parameter is lA;Ba �
a2

s2 s2
ga½R2

AQ 2RAQRABRQB þ R2
QB�=ð1 R2

ABÞ. The corresponding

F-test statistic is denoted by FAB,a.

Non-centrality parameters of linkage studies

Consider a nuclear family with k children and both parents.

Under the null hypothesis of no linkage between the trait

locus and markers, the correlation of each sib-pair is

rN ¼
s2

ga

2s2
þ

s2
gd

4s2
þ s2

Ga

2s2
þ s2

Gd

4s2
:

The expected log-likelihood is Eð2LNullÞ ¼ ðkþ 2Þ�
logð2ps2Þþ1

�
log
�
ð1 2r2

0Þþðk 1ÞðrN 2r2
0Þ
�
ð1 rNÞ

k 1�:
Under the alternative hypothesis of linkage between the

trait locus and marker A, the correlation between a sib-pair

is Ci ¼ Covðy1; y2jpA ¼ i=2Þ=s2¼ðs2
ga þ s2

gdÞPðpQ¼1jpA ¼ i=2Þ=
s2 þ s2

ga

2 PðpQ¼1=2jpA¼ i=2Þ=s2 þ ½s2
Ga=2þ s2

Gd=4�=s2; i¼0; 1; 2.

From Haseman and Elston,22 Table IV, we have

C2 ¼ ðs2
ga þ s2

gdÞc2
A þ s2

gacAð1 cAÞ þ s2
Ga=2þ s2

Gd=4
h i

=s2

C1 ¼ ðs2
ga þ s2

gdÞcAð1 cAÞ þ s2
ga½1 2cAð1 cAÞ�=2

h
þs2

Ga=2þ s2
Gd=4

�
=s2

C0 ¼ ðs2
gaþ s2

gdÞð1 cAÞ
2þs2

gacAð1 cAÞþs2
Ga=2þs2

Gd=4
h i

=s2:

ð13Þ

The expected log-likelihood under the alternative hypoth-

esis of linkage is

Eð2Lrandom;AÞ ¼ ðkþ 2Þ½logð2ps2Þ þ 1�X
p12A

� � �
X
pk 1;kA

Pðp12AÞ � � �Pðpk 1;kAÞ:

log det

1 0 r0 r0 � � � r0

0 1 r0 r0 � � � r0

r0 r0 1 C2p12A
� � � C2p1kA

r0 r0 C2p21A
1 � � � C2p2kA

..

. ..
. ..

. ..
.

� � � ..
.

r0 r0 C2pk1A
C2pk2A

� � � 1

0BBBBBBBBB@

1CCCCCCCCCA
;

where P(pijA=0)=P(pijA=1)=1/4 and P(pijA=1/2)=1/2. From

Stuart and Ord,20 the non-centrality parameter for linkage

of the nuclear family is equal to llinkage,A=E(2Lrandom,A) –

E(2LNull). If k=2, it can be shown that llinkage;A ¼
log½1 4r2

0 r2
N þ 4r2

0rN �
P2

i¼0 Pðp12A ¼ i=2Þlog½1 4r2
0

C2
i þ 4r2

0Ci�.
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Under the alternative hypothesis of linkage between the

trait locus and markers A and B, the correlation between a

sib-pair is given by for i, j=0, 1, 2

Cij ¼ Covðy1; y2jp12A ¼ i=2; p12B ¼ j=2Þ=s2

¼ ðs2
ga þ s2

gdÞPðp12Q ¼ 1jp12A ¼ i=2;p12B ¼ j=2Þ
h
þ
s2

ga

2
Pðp12Q ¼ 1=2jp12A ¼ i=2;p12B ¼ j=2Þ

þ s2
Ga=2þ s2

Gd=4
i
=s2:

ð14Þ

To calculate Cij , we need to calculate the joint distribution

of p12A, p12Q and p12B of a sib-pair under the alternative

hypothesis of linkage. Assume that there is no interference

for disjoint regions of the chromosome. Then we have

Pðp12A ¼ iA;p12Q ¼ iQ ;p12B ¼ iBÞ
¼ Pðp12A ¼ iA; p12Q ¼ iQÞPðp12B ¼ iBjp12A ¼ iA; p12Q ¼ iQÞ
¼ Pðp12A ¼ iAjp12Q ¼ iQÞPðp12Q ¼ iQÞPðp12B ¼ iBjp12Q ¼ iQÞ:

ð15Þ

From Haseman and Elston,22 Table IV, we may construct

the joint distribution of p12Q, p12A and p12B by relation

(15), and the results are presented in Table 3 of Fan.17

Based on the results, we can calculate Cij, i, j=0, 1, 2, which

are given in Appendix D of Fan.17 The expected log-likeli-

hood under the alternative hypothesis of linkage is

E(2Lrandom,AB)= – (k+2)[log(2ps2)+1] –Sp12A
Sp12B

× × × Spk – 1,kA

Spk71,kB
P(p12A)P(p12B) × × × P(pk – 1,kA) P(pk – 1,kB)

log det

1 0 r0 r0 � � � r0

0 1 r0 r0 � � � r0

r0 r0 1 C2p12A ;2p12B
� � � C2p1kA ;2p1kB

r0 r0 C2p21A ;2p21B
1 � � � C2p2kA ;2p2kB

..

. ..
. ..

. ..
.

� � � ..
.

r0 r0 C2pk1A ;2pk1B
C2pk2A ;2pk2B

� � � 1

0BBBBBBBBB@

1CCCCCCCCCA
;

where P(pijB=0)=P(pijB=1)=1/4 and P(pijB=1/2)=1/2 such as

those for marker A. From Stuart and Ord20
, the non-central-

ity parameter for linkage of the nuclear family is equal to

llinkage,AB=E(2Lrandom,AB) – E(2LNull). If k=2, it can be shown

that llinkage;AB ¼ log½1 4r2
0 r2

N þ 4r2
0rN �

P2
i;j¼0 Pðp12A ¼

i=2ÞPðp12B ¼ j=2Þlog½1 4r2
0 C2

ij þ 4r2
0Cij�.

Power calculation and comparison

Let us denote heritability by h2 which is defined by

h2 ¼ s2
ga=s

2. In the power calculations, we take the additive

polygenic variance s2
Ga ¼ 0:10, polygenic dominant variance

s2
Gd ¼ 0:05, the equal allele frequencies PA=q1=PB=0.5 at the

two markers A and B, and the QTL Q. Moreover, suppose

that m11=a, m12=m21=d and m22= – a.

Suppose that the map distance lAB between marker A and

marker B is known. Under the assumption of no interfer-

ence, we may calculate the recombination fraction by

Haldane’s map function yAB=[1 – exp( – 2lAB)]/2. Similarly,

we may calculate the recombination fractions yAQ and yQB

by the map distances lAQ and lQB. Assume that marker A

and marker B are in linkage equilibrium, i.e., DAB=0, the

genetic distances lAB=5 cM, lAQ=lQB=2.5 cM, and the herit-

ability h2=0.25. Suppose we have a sample with n=100

individuals, m=30 trio families, and k=20 nuclear families

with two offspring. Assume that the IBD proportions shared

by the two offspring in the k=20 families at both markers A

and B are pA= pB=0.5, and the probability of sharing two

alleles IBD at markers A and B are �A=�B=0.5. Figure 1

shows the power of the test statistics FAB,ad, FAB,a, FA,ad,

and FA,a against the disequilibrium coefficient DAQ when

DQB=0.15 for a mode of dominant inheritance with

a=d=1.0, and a mode of recessive inheritance with a=1.0,

d= – 0.5, respectively. Several features are interesting in the

two graphs of Figure 1. First, the power of FAB,ad and FAB,a

are higher than that of FA,ad and FA,a. Hence, the regression

mapping which uses two markers A and B has its advantage

Figure 1 Power of test statistics FAB,ad, FAB,a, FA,ad, and FA,a

against disequilibrium coefficient DAQ at 0.01 significant level,
when q1=PA=PB=0.50, DAB=0.0, DQB=0.15, h2=0.25, n=100,
m=30, k=20, pA=pB=�A=�B=0.5, lAB=5 cM, lAQ=lQB=2.5 cM,
�2

Ga ¼ 0:10; �2
Gd ¼ 0:05 for a mode of dominant inheritance

a=d=1.0, and a mode of recessive inheritance a=1.0, d= – 0.5,
respectively.
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over the one marker mapping which only uses one marker

A or B. Second, the statistic FAB,ad has higher power than

that of FAB,a, and the statistic FA,ad has higher power than

that of FA,a. Thus, excluding the dominant variance from

the analysis when it does exist would lose power. Third,

as expected, when DAQ=0 the power to detect LD using only

marker A is minimal. More interestingly, when DAQ=0.15

the power is still higher using the flanking two markers

than using only marker A.

Figure 2 shows the power of the test statistics FAB,ad, FAB,a,

FA,ad, and FA,a against the heritability h2 when DAB=0.10 and

DAQ=DQB=0.15 for a mode of dominant inheritance with

a=d=1.0, and a mode of recessive inheritance with a=1.0,

d= – 0.5, respectively. The other parameters are the same as

those of Figure 1. Among the features observed in Figure

1, the power is reasonably high when the heritability h2 is

bigger than 0.15. To compare the power of population

based and family based methods, Figure 3 shows the power

of the test statistics FAB,ad and FAB,a for a mode of dominant

inheritance with a=d=1.0, and a mode of recessive inheri-

tance with a=1.0, d= – 0.5, respectively. For Figure 3,

population data contain n=252 individuals, but no family

data (m=k=0). For dominant inheritance of Figure 3, the

data contain m=84 trio families (n=k=0). For recessive

inheritance of Figure 3, the data contain k=63 nuclear

families each has two offspring (n=m=0). Notice that m=84

or k=63 family data contain 252 individuals, and thus the

number of individuals is the same as that of the population

data. We can see that population based method is more

powerful than the family based method for the same

number of individuals.

In a population, the LD can exist due to mutations at the

trait locus. In the absence of tight linkage between the trait

locus and a marker, the recombination between the marker

locus and the trait locus can rapidly dissipate the disequili-

brium from generation to generation. Denote the frequency

of haplotype AQ at the generation when the mutations

occur by P(AQ)(0). Then LD coefficient is DAQ(0)=

P(AQ)(0) – q1PA for the generation when the mutations

occur. For the following generations, the disequilibrium

Figure 3 Power of test statistics FAB,ad and FAB,a against herit-
ability h2 at 0.01 significant level for a mode of dominant in-
heritance a=d=1.0, and a mode of recessive inheritance a=1.0,
d= – 0.5, respectively. For population data n=252, m=k=0; for
dominant family data n=k=0, m=84; for recessive family data
n=m=0, k=63. Other parameters are the same as those of Figure
2.

Figure 2 Power of test statistics FAB,ad, FAB,a, FA,ad, and FA,a

against heritability h2 at 0.01 significant level, when q1=PA=PB=
0.50, DAB=0.10, DAQ=DQB=0.15, n=100, m=30, k=20, pA=pB=
�A=�B=0.5, lAB=5 cM, lAQ=lQB=2.5 cM, �2

Ga ¼ 0:10; �2
Gd ¼ 0:05

for a mode of dominant inheritance a=d=1.0, and a mode of
recessive inheritance a=1.0, d= – 0.5, respectively.
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coefficient is reduced by a factor 17yAQ in each genera-

tion.23 Suppose that the mutation is already T generation

old. Then the LD coefficient is DAQ(T)=DAQ(0)(1 – yAQ)T.

Similarly, the other LD coefficients are DAB(T)=DAB(0)(1 –

yAB)T and DQB(T)=DQB(0)(1 – yQB)T.

Assume that the map distance between marker A and

marker B is lAB=5 cM, and the other parameters are given

by DAB(0)=0.20,DAQ(0)=DQB(0)=0.25, h2=0.25, lAB=5 cM,

n=100, m=30, k=20, T=30, pA= pB=0.5, �A=�B=0.25. Figure

4 shows the power of the test statistics FAB,ad, FAB.a, FA.ad,

and FA,a against the recombination fraction yAQ for a mode

of dominant inheritance with a=d=1.0, and a mode of reces-

sive inheritance with a=1.0, d= – 0.5, respectively. We can

see that the power curves of FAB,ad and FAB,a are very high,

although the power curves of FA.ad and FA,a decrease very

rapidly as the recombination fraction yAQ increases. Hence,

high resolution LD mappings have advantage to do fine

gene mappings, and appropriate for the dense marker maps

such as single nucleotide polymorphisms on human

genome. To investigate the effect of the age of the mutation

on the power, Figure 5 shows the power curves against the

position of markers. In the Figure, the QTL locates at 15 cM

which is flanked by two markers A and B. One marker is

one the right-hand side of the QTL, and the other is on

the left-hand side with equal distance to the QTL. The

power decreases quickly when the age of the mutation

increases. For a mutation which is 30 generations old, one

should expect very low power if the markers locate 5 cM

away from the QTL.

To explore the linkage interval mapping, we take a

sample of k=250 nuclear families each has two offspring.

Multiplying llinkage,A and llinkage,AB by k, we may calculate

the non-centrality parameters for the linkage mapping

using marker A and the linkage interval mapping using

markers A and B. Moreover, assume that the genetic

distances are lAB=30 cM, and lAQ=lQB=15 cM, i.e., the QTL

Q is right in the middle between markers A and B. Figure

6 gives power curves of linkage interval mapping by

markers A and B, and linkage mapping by marker A against

heritability h2 for a mode of dominant inheritance with

Figure 5 Power curves of the test statistics FAB,ad against the
position of markers at 0.01 significant level for a mode of
dominant inheritance a=d=1.0, and a mode of recessive inheri-
tance a=1.0, d= – 0.5, respectively. The QTL locates at 15 cM

which is flanked by two markers A and B. Here the mutation age
T=20, 30, 40, 60, and the other parameters are the same as
those in Figure 4.

Figure 4 Power curves of the test statistics FAB,ad, FAB,a, FA,ad,
and FA,a against the recombination fraction yAQ at 0.01 signifi-
cant level, when q1=PA=PB=0.50, DAB(0)=0.20, DAQ(0)=DQB(0)=
0.25, h2=0.25, lAB=5 cM, T=30, n=100, m=30, k=20, pA=pB=0.5,
�A=�B=0.25, �2

Ga ¼ 0:10; �2
Gd ¼ 0:05 for a mode of dominant

inheritance a=d=1.0, and a mode of recessive inheritance a=1.0,
d= – 0.5, respectively.
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a=d=1.0, and a mode of recessive inheritance with a=1.0,

d= – 0.5, respectively. It is clear that the power of interval

linkage mapping using both markers A and B is higher than

that of linkage mapping using only one marker A.

Discussion
In this paper, we investigate variance component models of

both high resolution LD mapping and linkage analysis for

QTL. The models are based on family pedigree and popula-

tion data. We consider likelihoods which utilizes flanking

marker information. The likelihoods jointly include recom-

bination fractions, LD coefficients, the average allele

substitution effect and allele dominant effect as parameters.

The linkage parameters are contained in the variance-covar-

iance matrix. The parameters of LD and gene effects are

contained in the regression coefficients.8,9,11,12 The model

simultaneously takes care of the linkage, LD and the effects

of the putative trait locus Q, and hence clearly demon-

strates that linkage analysis and LD mapping are

complimentary, not exclusive, methods for QTL mapping.

The family data which have at least two offspring contain

information for both linkage and association, and popula-

tion data and trio family data which have two parents

and only one offspring contain information for association.

By combining the family and population data in the analy-

sis, one may expect to get better results than that by

analysing them separately.

Linkage analysis can localize genetic trait loci in broad

chromosome regions of a few cM (510 cM), and is less

sensitive to population admixture than LD mapping. In

practice, one may carry out linkage analysis as a first step

to obtain prior suggestive linkage based on a sparse marker

map. By performing linkage interval mappings, one may

get higher power than that of using only one marker. With

prior linkage in hand, LD mapping can be used to get high

resolution of the genetic trait loci based on a dense marker

map. We have shown that models of high resolution LD

mappings using two flanking markers have higher power

than that of models of using only one marker. Hence, high

resolution LD mappings have the advantages to do fine

gene mappings, and appropriate for the dense marker maps

such as SNPs on human genome. Performing both LD

mapping and linkage analysis has potential to avoid false

positives due to population history or environmental

effects. In the meantime, it takes the advantage of high

resolution of LD mapping.

The power of association study depends on the existence

of LD between trait locus and markers. In the absence of

LD, the power of LD mappings is very low. To increase

the probability of detecting LD, one may need to carry

out suitable design for a genetic study.24 It is well known

that the level of LD is heavily affected by population

stratification. On the one hand, the family based methods

are less likely influenced by population stratification than

those of population data based methods. On the other

hand, a family based association study is less powerful than

that of population based study for the same number of

individuals. Combining the family and population data,

one may expect more information, and take the advantage

of population data and family data. More investigation is

needed to explore the population stratification effect on

high resolution LD mapping of QTL, and to develop robust

methods to identify association between multiple markers

and QTL in the presence of population stratification.

To our knowledge, there is not much research on statisti-

cal analysis about high resolution LD mapping of QTL.

Using only one bi-allelic marker, the statistical analysis of

LD mapping has been studied by a few colleagues.8 – 13 Rela-

tively, multipoint linkage mapping has been studied more

intensively.16,19,25 It is our hope that the current research

may shed more light on the high resolution association

study, and stimulate more interests to utilize the advantage

of LD mapping in fine resolution of genetic studies. In the

Section of power calculation and comparison, we mainly

explore a set of scenarios of LD mapping. For several sets

of parameters, we compare the power of four test statistics

Figure 6 Power curves of the linkage interval mapping by
markers A and B, and linkage mapping by marker A against the
heritability h2, when q1=PA=PB=0.50, lAB=30 cM, lAQ=lQB=
15 cM, k=250, �2

Ga ¼ 0:10; �2
Gd ¼ 0:05, at 0.05 significant level

for a mode of dominant inheritance a=d=1.0, and a mode of
recessive inheritance a=1.0, d= – 0.5, respectively.
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for LD mapping. Moreover, we compare the power of LD

mapping of using population data and family data. We also

investigate the effect of mutation age on the power. For

linkage mapping, we only include one figure to make power

comparison of linkage interval mapping using two markers

with linkage mapping using only one marker.9 This reflects

the need for more research on high resolution LD mapping

of QTL, since the research on linkage interval/multipoint

mapping is more mature.

In this paper, we treat LD as a fixed effect since only two

markers are considered. In general, inference about the LD

structure in the population are desirable, and LD should be

modeled as a random effect when multiple markers/haplo-

types are used in analysis, which would need more

investigation. We assume that the data of all family

members are available. For some late-onset diseases, the

data for the parents or former family members may no

longer be available. In principle, one can use similar meth-

ods as the ones proposed in this paper to perform high

resolution LD mapping for sib-pair data of late-onset

diseases. This is an area which is of importance and needs

more research. Due to the length of this paper, we do not

pursue these issues in depth, and they will be explored in

other projects.
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Appendix A

In this Appendix, we show equation (6). Actually, we have

E½xAf xA1� ¼ 2PaE½xA1;Af ¼ AA� þ ðPa PAÞE½xA1;Af ¼ Aa�
2PAE½xA1;Af ¼ aa�

¼ 2Pa

h
2PaPA þ ðPa PAÞPa 2PA � 0

i
P2

A

2PA

h
2Pa � 0þ ðPa PAÞPA 2PAPa

i
P2

a

þ ðPa PAÞ
h
2PaPA þ ðPa PAÞðPa þ PAÞ 2PAPa

i
ð2PAPa=2Þ

¼ 2PaPaP2
A þ ðPa PAÞðPa PAÞPaPA

2PAð PAP2
aÞ ¼ PaPA

E½xAf xB1� ¼ 2PaE½xB1;Af ¼ AA� þ ðPa PAÞE½xB1;Af ¼ Aa�
2PAE½xB1;Af ¼ aa�

¼ 2Pa

h
2Pb � PðABÞPA � PB þ ðPb PBÞ��

PðABÞPA �Pb þ PðAbÞPA � PB

�
2PB � PðAbÞPA � Pb

i
þ ðPa PAÞ

h
2Pb �

�
PðABÞPa � PB þ PðaBÞPA � PB

�
þ ðPb PBÞ �

�
PðABÞPa � Pb þ PðAbÞPa � PB

þ PðaBÞPA � Pb þ PðabÞPA � PB

�
2PB �

�
PðAbÞPa � Pb þ PðabÞPA � Pb

�i
2PA

h
2Pb � PðaBÞPa � PB

þ ðPb PBÞ �
�

PðaBÞPa � Pb þ PðabÞPa � PB

�
2PB � PðabÞPa � Pb

i
¼ 2Pa½PðABÞPAPb PðAbÞPAPB�
þ ðPa PAÞ½PðABÞPaPb þ PðaBÞPAPb

PðAbÞPaPB PðabÞPAPB� 2PA½PðaBÞPaPb

PðabÞPaPB�
¼ PðABÞPaPb PðaBÞPAPb PðAbÞPaPB

þ PðabÞPAPB ¼ DAB

E½xAf zA1� ¼ 2PaE½zA1;Af ¼ AA� þ ðPa PAÞE½zA1;Af ¼ Aa�
2PAE½zA1;Af ¼ aa�

¼ 2Pa

h
P2

aPA þ ðPaPAÞPa P2
A � 0

i
P2

A

2PA

h
P2

a � 0þ PaPAPA P2
APa

i
P2

a

þ ðPa PAÞ
h

P2
aPA þ PaPAðPa þ PAÞ

P2
APa

i
2PAPa=2 ¼ 0

E½xAf zB1� ¼ 2PaE½zB1;Af ¼ AA� þ ðPa PAÞE½zB1;Af ¼ Aa�
2PAE½zB1;Af ¼ aa�

¼ 2Pa

h
P2

b � PðABÞPA � PB þ PbPB�

�
PðABÞPA � Pb þ PðAbÞPA � PB

�
P2

B � PðAbÞPA � Pb

i
þ ðPa PAÞ

h
P2

b �
�

PðABÞPa � PB þ PðaBÞPA � PB

�
þ PbPB �

�
PðABÞPa � Pb þ PðAbÞPa � PB þ PðaBÞPA � Pb

þ PðabÞPA � PB

�
P2

B �
�

PðAbÞPa � Pb þ PðabÞPA � Pb

�i
2PA

h
P2

b � PðaBÞPa � PB

þ PbPB �
�

PðaBÞPa � Pb þ PðabÞPa � PB

�
P2

B � PðabÞPa � Pb

i
¼ 0:

Similarly, we may show the other terms in equation (6).

Appendix B

By equations (6), (7), and large number theory, we can

show the approximation (8). For instance, the approxima-

tion for element on the second row and the second

column is

1

m

Xnþm

i¼mþ1

ðxAfi xAmi xA1iÞ� 1
i ðxAfi xAmi xA1iÞt

¼ 1

ð1 2r2
0Þs2

1

m

Xnþm

i¼nþ1

h�
ð1 r2

0ÞxAfi þ r2
0xAmi r0xA1i

�
xAfi

þ
�
r2

0xAfi þ ð1 r2
0ÞxAmi r0xA1i

�
xAmi

þ
�

r0xAfi r0xAmi þ xA1i

�
xA1i

i
� 1

ð1 2r2
0Þs2

h
2ð1 r2

0Þ2PaPA 4r0PaPA þ 2PaPA

i
¼ 2PaPAð3 2r0 2r2

0Þ
ð1 2r2

0Þs2
:

For the element on the forth row and the forth column, we

have

1

m

Xnþm

i¼mþ1

ðzAfi zAmi zA1iÞ� 1
i zAfi zAmi zA1i

�t
¼ 1

ð1 2r2
0Þs2

1

m

Xnþm

i¼nþ1

h�
ð1 r2

0ÞzAfi þ r2
0zAmi r0zA1i

�
zAfi

þ
�
r2

0zAfi þ ð1 r2
0ÞzAmi r0zA1i

�
zAmi

þ
�

r0zAfi r0zAmi þ zA1i

�
zA1i

i
� P2

aP2
Að3 2r2

0Þ
ð1 2r2

0Þs2
:
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Appendix C

To prove equation (10), we first have

EðxA1xA2Þ ¼ P4
AE½xA1xA2jAf ¼ AA;Am ¼ AA�
þ 2P2

Að2PAPaÞE½xA1xA2jAf ¼ AA;Am ¼ Aa�
þ 2P2

AP2
aE½xA1xA2jAf ¼ AA;Am ¼ aa�

þ ð2PAPaÞ2E½xA1xA2jAf ¼ Aa;Am ¼ Aa�
þ 2P2

að2PAPaÞE½xA1xA2jAf ¼ Aa;Am ¼ aa�
þ P4

aE½xA1xA2jAf ¼ aa;Am ¼ aa�

¼ P4
Að4P2

aÞ þ 4P3
APa

h
2Pa=2þ ðPa PAÞ=2

i2

þ 2P2
AP2

a ½Pa PA�2 þ ð2PAPaÞ2�h
2Pa=4þ ðPa PAÞ=2 2PA=4

i2

þ 4P3
aPA

h
ðPa PAÞ=2 2PA=2

i2
þ P4

að4P2
AÞ

¼ PAPa

EðxA1zA2Þ ¼ P4
AE½xA1zA2jAf ¼ AA;Am ¼ AA�
þ 2P2

Að2PAPaÞE½xA1zA2jAf ¼ AA;Am ¼ Aa�
þ 2P2

AP2
aE½xA1zA2jAf ¼ AA;Am ¼ aa�

þ ð2PAPaÞ2E½xA1zA2jAf ¼ Aa;Am ¼ Aa�
þ 2P2

að2PAPaÞE½xA1zA2jAf ¼ Aa;Am ¼ aa�
þ P4

aE½xA1zA2jAf ¼ aa;Am ¼ aa�
¼ P4

Að 2P3
aÞ þ 4P3

APa½2Pa=2þ ðPa PAÞ=2�
½ P2

a=2þ PaPA=2� þ 2P2
AP2

a ½Pa PA�PaPA

þ ð2PAPaÞ2
h
2Pa=4þ ðPa PAÞ=2 2PA=4

i
h

P2
a=4þ PaPA=2 P2

A=4
i

þ 4P3
aPA

h
ðPa PAÞ=2 2PA=2

ih
PaPA=2 P2

A=2
i

þ P4
að2P3

AÞ ¼ 0

EðzA1zA2Þ ¼ P4
AE½zA1zA2jAf ¼ AA;Am ¼ AA�
þ 2P2

Að2PAPaÞE½zA1zA2jAf ¼ AA;Am ¼ Aa�
þ 2P2

AP2
aE½zA1zA2jAf ¼ AA;Am ¼ aa�

þ ð2PAPaÞ2E½zA1zA2jAf ¼ Aa;Am ¼ Aa�
þ 2P2

að2PAPaÞE½zA1zA2jAf ¼ Aa;Am ¼ aa�
þ P4

aE½zA1zA2jAf ¼ aa;Am ¼ aa�

¼ P4
Að P2

aÞ
2 þ 4P3

APa

h
P2

a=2þ PaPA=2
i2

þ 2P2
AP2

a ½PaPA�2

þ ð2PAPaÞ2
h

P2
a=4þ PaPA=2 P2

A=4
i2

þ 4P3
aPA

h
PaPA=2 P2

A=2
i2

þ P4
að P2

AÞ
2

¼ P2
aP2

A=4:

Similarly, we may show that EðxB1xB2Þ ¼ PbPB; E ðxB1zB2Þ ¼
0; EðzB1zB2Þ ¼ P2

bP2
B=4: To show the other terms of (10), we first

calculate the joint probabilities P(A1,B2), in which the first

offspring’s genotype is A1 at marker A and the second

offspring’s genotype is B2 at marker B, A12{AA,Aa, aa},

B22{BB, Bb, bb}.We need to consider nine possible phases

{AA, Aa, aa}6{BB, Bb, bb} for each parent. At the first glance,

one needs to consider 969 possible matings to calculate

P(A1,B2). However, many matings do not lead to specific

genotypes (A1,B2) of a sib pair. This eliminates many terms

and reduces the amount of calculations. For instance, a

mating of (Af =AA, Bf =BB)6(Am=AA, Bm=BB) only results

offspring with genotype (AA,BB). Then, we have

PðA1 ¼ AA;B2 ¼ BBÞ
¼
X
Af ;Bf

PðAf ;Bf Þ
X

Am;Bm

PðAm;BmÞP½A1 ¼ AA;B2

¼ BBjðAf ;Bf Þ; ðAm;BmÞ�

¼ PðABÞ2
h
PðABÞ2 þ 2 � 2PðABÞPðAbÞ=2þ 2 � 2PðABÞPðaBÞ=2

þ 2 � ½2PðABÞPðabÞ þ 2PðAbÞPðaBÞ�=4
i

þ 2PðABÞPðAbÞ
h
2PðABÞPðAbÞ=4

þ 2 � 2PðABÞPðaBÞ=4þ 2 � ½2PðABÞPðabÞ

þ 2PðAbÞPðaBÞ� � 1=2 � 1=4
i

þ 2PðABÞPðaBÞ
h
2PðABÞPðaBÞ=4þ 2 � ½2PðABÞPðabÞ

þ 2PðAbÞPðaBÞ� � 1=2 � 1=4
i

þ ½2PðABÞPðabÞ þ 2PðAbÞPðaBÞ�2 � 1=4 � 1=4
¼ ðPðABÞ PAPBÞ2=4þ PAPBPðABÞ ¼ �2

AB=4þ PAPBPðABÞ:
ð16Þ

Symmetrically, we may get the following three terms

PðA1 ¼ AA;B2 ¼ bbÞ ¼ �2
AB=4þ PAPbPðAbÞ;

PðA1 ¼ aa;B2 ¼ BBÞ ¼ �2
AB=4þ PaPBPðaBÞ;

PðA1 ¼ aa;B2 ¼ bbÞ ¼ �2
AB=4þ PaPbPðabÞ:

ð17Þ

Note that P(A1=AA, B2=Bb)=P(A1=AA)7P(A1=AA, B2=BB or

bb). Hence,

PðA1 ¼ AA;B2 ¼ BbÞ ¼ �2
AB=2þ PðABÞPAPb þ PðAbÞPAPB:

ð18Þ
Similarly, we may calculate the following three terms

PðA1 ¼ aa;B2 ¼ BbÞ ¼ �2
AB=2þ PðaBÞPaPb þ PðabÞPaPB

PðA1 ¼ Aa;B2 ¼ BBÞ ¼ �2
AB=2þ PðABÞPaPB þ PðaBÞPAPB

PðA1 ¼ Aa;B2 ¼ bbÞ ¼ �2
AB=2þ PðAbÞPaPb þ PðabÞPAPb:

ð19Þ

Finally, we can calculate the following term using equation

SA1 SB2 P(A1,B2)=1

PðA1 ¼ Aa;B2 ¼ BbÞ
¼ �2

AB þ PðABÞPaPb þ PðAbÞPaPB þ PðaBÞPAPb þ PðabÞPAPB:

ð20Þ
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Using equations (16), (17), (18), (19) and (20), we may

calculate

E½xA1xB2� ¼ 2Pa

h
2PbP½A1 ¼ AA;B2 ¼ BB�

þ ðPb PBÞP½A1 ¼ AA;B2 ¼ Bb�

2PBP½A1 ¼ AA;B2 ¼ bb�
i

þ ðPa PAÞ
h
2PbP½A1 ¼ Aa;B2 ¼ BB�

þ ðPb PBÞP½A1 ¼ Aa;B2 ¼ Bb�

2PBP½A1 ¼ Aa;B2 ¼ bb�
i

2PA

h
2PbP½A1 ¼ aa;B2 ¼ BB�

þ ðPb PBÞP½A1 ¼ aa;B2 ¼ Bb�

2PBP½A1 ¼ aa;B2 ¼ bb�
i
¼ DAB:

Similarly, we may get E½xA1zB2� ¼ 0; E½zA1zB2� ¼ D2
AB=4. By

symmetric property, we may calculate the remaining terms

in (10).

Appendix D

Let
P 1

i be the matrix given by (9). To show the approxi-

mation of (11), we notice that d11 can be calculated by

d11 ¼ s2ð1 1 1 1Þ
P 1

i ð1 1 1 1Þt. The element on

the second row and the second column of approximation

(11) can be calculated by

1

k

Xnþmþk

i¼nþmþ1

ðxAfi xAmi xA1i xA2iÞ� 1
i ðxAfi xAmi xA1i xA2iÞt

¼ 1

s2

1

k

Xnþmþk

i¼nþmþ1

h�
ð1þ 2Cr0ÞxAfi þ 2Cr0xAmi CxA1i CxA2i

�
xAfi

þ
�

2Cr0xAfi þ ð1þ 2Cr0ÞxAmi CxA1i CxA2i

�
xAmi

þ
�

CxAfi CxAmi þ
Cð1 2r2

0Þ
r0ð1 r12Þ

xA1i

Cðr12 2r2
0Þ

r0ð1 r12Þ
xA2i

�
xA1i

þ
�

CxAfi CxAmi
Cðr12 2r2

0Þ
r0ð1 r12Þ

xA1i

þ Cð1 2r2
0Þ

r0ð1 r12Þ
xA2i

�
xA2i

i

� 1

s2

h�
ð1þ 2Cr0Þ2PaPA þ 0 CPaPA CPaPA

�
þ
�

0þ ð1þ 2Cr0Þ2PaPA CPaPA CPaPA

�
þ
�

CPaPA CPaPA þ
Cð1 2r2

0Þ
r0ð1 r12Þ

2PaPA

Cðr12 2r2
0Þ

r0ð1 r12Þ
PaPA

�
þ
�

CPaPA CPaPA
Cðr12 2r2

0Þ
r0ð1 r12Þ

PaPA

þ Cð1 2r2
0Þ

r0ð1 r12Þ
2PaPA

�i
¼ 2PaPAd22=s2:

Similarly, the element on the forth row and the forth

column of approximation (11) is

1

k

Xnþmþk

i¼nþmþ1

ðzAfi zAmi zA1i zA2iÞ� 1
i ðzAfi zAmi zA1i zA2iÞt

¼ 1

s2

1

k

Xnþmþk

i¼nþmþ1

h�
ð1þ 2Cr0ÞzAfi þ 2Cr0zAmi CzA1i CzA2i

�
zAfi

þ
�

2Cr0zAfi þ ð1þ 2Cr0ÞzAmi CzA1i CzA2i

�
zAmi

þ
�

CzAfi CzAmi þ
Cð1 2r2

0Þ
r0ð1 r12Þ

zA1i

Cðr12 2r2
0Þ

r0ð1 r12Þ
zA2i

�
zA1i

þ
�

CzAfi CzAmi
Cðr12 2r2

0Þ
r0ð1 r12Þ

zA1i

þ Cð1 2r2
0Þ

r0ð1 r12Þ
zA2i

�
zA2i

i
� 2

s2

h
ð1þ 2Cr0ÞP2

aP2
A þ

�Cð1 2r2
0Þ

r0ð1 r12Þ
P2

aP2
A

Cðr12 2r2
0Þ

r0ð1 r12Þ
P2

aP2
A=4

�i
¼ P2

aP2
Ad44=s2:

The other terms of approximation (11) can be calculated in

a similar manner.
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