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Analytic power calculation for QTL linkage analysis of
small pedigrees

FruÈhling V Rijsdijk*,1, John K Hewitt2 and Pak C Sham1

1Social, Genetic and Developmental Psychiatry Research Centre, Institute of Psychiatry, London SE5 8AF, UK;
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Power calculation for QTL linkage analysis can be performed via simple algebraic formulas for small
pedigrees, but requires intensive computation for large pedigrees, in order to evaluate the expectation of the
test statistic over all possible inheritance vectors at the test position. In this report, we show that the non-
centrality parameter for an arbitrary pedigree can be approximated by the sum of the variances of the
correlations between all pairs of relatives, each variance being weighted by a factor that is determined by the
mean correlation of the pair. We show that this approximation is sufficiently accurate for practical purposes in
small to moderately large pedigrees, and that large sibships are more efficient than other family structures
under a range of genetic models. European Journal of Human Genetics (2001) 9, 335 ± 340.
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Introduction
Traditional variance components models for family data

specify the covariances between relatives to be a function

of genetic relationship; extension to QTL linkage analysis

involves simply specifying the covariances also as a

function of the proportion of alleles identical-by-descent

(IBD) at the putative quantitative trait locus. Although

simplest for the case of sib pairs, variance components

models for QTL linkage analysis have been formulated for

general pedigrees of arbitrary complexity.1 ± 3 The basic

model, which incorporates QTL effects in the covariance

structure, has been extended to accommodate QTL-related

mean differences, for a combined test of linkage and

association.4,5

The power of variance components QTL linkage analysis

has been extensively investigated. Simulation studies have

demonstrated the greater power of variance component

modelling over Haseman-Elston regression.6 ± 9 Several

groups have derived analytic forms for the non-centrality

parameter (NCP) of the test.10 ± 12 Dolan et al10 fitted

covariance structure models to the expected covariance

matrices for sibships of size 2, 3 and 4, and found NCP per

sib to be approximately in the ratios 1 : 2 : 3. Williams and

Blangero11 derived, through the information matrix, the

approximate NCP for any arbitrary relationship, and outlined

a computationally intensive method for obtaining the NCP

for general pedigrees. Sham et al12 considered the expectation

of the likelihood ratio test statistic and showed that the NCP

per sib pair was, to a first approximation, equal to the

variance of the correlation between sibs as a function of the

proportion of alleles IBD (p). However, this approximation is

inaccurate in the presence of substantial residual sib

correlation. In this study, we propose an improvement to

the approximation, and demonstrate how the method can be

used to obtain an estimate of the power of a pedigree of

arbitrary structure.

Method
Variance components model for QTL linkage in general

pedigrees

Our previous formulation of variance-components models

for sibship data incorporates both additive effects and

dominance deviations of the QTL, and lumps all residual

shared effects into a single component.4,12 In extending this

model to non-inbred pedigrees, it is necessary either to

specify important and identified sources of familial resem-
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blance, or a specific trait correlation for each class of relative

pairs. Here, we choose to specify explicit sources of familial

resemblance: additive (s 2
A) and dominance (s 2

D) effects at the

QTL, background additive polygenic variance (s 2
G), sibship-

specific shared environmental variance (s 2
S ), and non-shared

environmental variance (s 2
N). The covariance matrix (~) is of

size n6n, where n is the number of individuals in the

pedigree for whom trait measurement is available. For every

pair of relatives, ie j and k, the proportion of alleles IBD (p̂jk)

and the probability of complete IBD sharing (ẑjk) are assumed

to have been estimated from marker genotype data. The

covariance matrix is specified as:

�P�jk � s2
A � s2

D � s2
G � s2

N � s2
S if j � k

p̂jk s2
A � ẑjk s2

D�E�p̂jk�s2
G � sjk s2

S if j 6� k

�
where E (p̂jk) is the expected proportion alleles IBD between

pairs of relatives (which is twice the kinship coefficient in

non-inbred families); sjk is 1 if the two relatives are siblings

and 0 otherwise. The components s 2
G and s 2

S are

responsible for familial resemblance in the quantitative

trait not accounted for by the QTL. Genetic models are

specified in terms of certain assumed values of the variance

components, denoted as VA, VD, VG, VS and VN. The total

variance is assumed to be unity, for notational conve-

nience.

The log-likelihood function of a pedigree is given by:

ln L � 1

2
lnjPj 1

2
�y m�0P 1�y m�; �1�

where m and ~ are the mean and variance-covariance matrix

for a trait y, respectively. The mean vector can be modeled

for association analysis,4 but is not directly relevant to

linkage.

Non-centrality parameter of linkage test

Exact calculation The test of linkage is twice the

difference in log-likelihood between a model in which

(s 2
A) and (s 2

D) are set free (ln LL) and a model in which they

are constrained to be 0 (ln LN), while all other variance

components are set free in both models. Under an

alternative hypothesis, the NCP (l) in large samples is the

expectation of the test statistic:

lL � E�2 ln LL� E�2 ln LN� � E�ln jPLj� � ln jPNj �2�

The expectation of the quadratic products cancel out,

being equal to n (pedigree size) under both the null and

alternative hypothesis. Under the null hypothesis, there is

only one covariance matrix, and the quadratic product

(when we consider a multivariate normal distribution) has

a chi-squared distribution with n degrees of freedom, the

expected value of which is n (n=the sample size). Under

the alternative hypothesis, there is a distinct covariance

matrix for each inheritance vector, but for each of these

cases the quadratic product will always have a chi-squared

distribution with n degrees of freedom and therefore mean

n. The expectation of the quadratic product, being a

weighted average of quantities that are all equal to n, is of

course also n.

Equation 2 was derived for sibships,12 but is directly

applicable to any pedigree structure. The exact calculation

of lL using this formula involves the computation of the

expectation of the logarithm of the determinant of the

covariance matrix, over all possible marker genotype

configurations (or IBD configurations if marker information

is complete).

We have written a program in S-PLUS for the

calculation of the NCP for general pedigrees, under the

assumption of complete marker information. This pro-

gram enumerates all possible inheritance vectors given

the pedigree structure. Each element of the inheritance

vector specifies whether a non-founder receives the

paternal or the maternal allele of a parent. For a pedigree

with m non-founders, the inheritance vector therefore has

dimension 2m, and the number of possible inheritance

vectors is 22m. Each inheritance vector (i) generates a

different IBD configuration between the pedigree mem-

bers and the IBD configuration in turn determines the

covariance matrix of the pedigree under the alternative

hypothesis:P
i � P̂iVA � ẐiVD � E�P̂�VG � SVS � IVN

where P̂i, Ẑi and S are n6n matrices containing values of p̂jk,

ẑjk, and sjk between the n pedigree members, and I is an

identity matrix. For each inheritance vector, the determinant

of the covariance matrix is computed. The expectation of the

log of the determinant of the covariance matrix of a pedigree,

E(ln|~L|), is simply the average of the log of the determinants

of the covariance matrices over all possible inheritance

vectors.

The expected covariance matrix, averaged over all possible

inheritance vectors, ~N, depends on the expected average

proportions of IBD sharing and the expected proportion of

complete IBD sharing between pedigree members.P
N � E�P̂��VA � VG� � E�Ẑ�VD � SVS � IVN

The estimate for VG under the null hypothesis, which sets VA

to 0, is asymptotically equal to VA+VG.

First-order approximation It was shown12 that, for a

standardised trait with small correlations between relatives,

an approximation to the determinant of the covariance

matrix is:

lnjPj � ln�1 P
rp jk

2� � P
rp jk

2

The subscript p indicates that the correlation is a function of

the proportion of alleles IBD. When this approximation is

applied to both the null and alternative hypotheses, we
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obtain a first-order approximation for the non-centrality

parameter:

lL � E�lnjPLj� � lnjPN j
�
X
j>k

E�rp jk
�2 �E�rp jk��2

�
�
X
j>k

Var�rp jk� �3�

�
X
j>k

Var�p̂ jk�V2
A � Var�ẑjk�V2

D � 2Cov�p̂jk; ẑjk�VAVD�

The first-order approximation of the non-centrality para-

meter for general pedigrees is thus determined by the

variances of the correlations between all constituent pairs

of relatives. Each variance is in turn determined by the

variances of p̂, ẑ and their covariance, which can be tabulated

for each class of relationship (see Table 1). Given these

variances and covariances, and the additive and dominance

components of QTL variance (VA and VD), the variance of the

trait correlation for each class of relatives can be calculated.

The NCP of a particular pedigree type for linkage, to a first-

order approximation, is simply the sum of these variances of

correlations over all pairs of relatives in the pedigree as in

equation 3.

Adjusted approximation This first-order approximation is

reasonably accurate only when correlations between relatives

are small. When correlations are large due either to a major

QTL or substantial residual genetic or shared environmental

effects, the first-order approximation tends to be too small.

Fortunately, the first-order approximation can be improved

by a simple adjustment derived from taking some second-

order terms. Consider a pair of relatives of arbitrary relation-

ship. The exact NCP is given by 7E(ln |~L|)+ln |~N|, which

can be rewritten as:

E ln
jPLj
jPN j
� �� �

� E ln
�1 r2

p �
�1 r2�
� �� �

� E ln 1
�r2

p r2�
�1 r2�

� �� �

where r denotes the average correlation between the pair of

relatives, ie the expectation of rp. By using the second-order

approximation ln(17x) *7x7x2/2 , we obtain:

lL � E
�r2

p r2�
�1 r2�
� �

� 1

2

�r2
p r2�
�1 r2�
� �2

( )

� 1

2�1 r2�2 E
�
2�r2

p r2��1 r2� � �r2
p r2�2�

By writing (rp
27r2) as (rp7r)2+2r(rp7r), this can be re-

expressed as:

lL � 1

2�1 r2�2 E
�
2��rp r�2 � 2r�rp r���1 r2����rp r�2 � 2r�rp r��2	

� 1

�1 r2�2 E

�
2r�1 r2��rp r� � �1� r2��rp r�2�

2r�rp r�3 � 1

2
�rp r�4

�
� �i� r2�
�i r2�2 Var �r��

�4�

The last step of the approximation ignores central moments

of rp higher than the variance. This result suggests that the

variance of rp in the first order approximation could be

adjusted by a factor of (1+r2)/(17r2)2, when the correlations

between relatives are substantial.

Power calculation

Although we have derived the NCP for a linkage test under a

model with both additive and dominance effects at the QTL,

power calculation under such a model is complicated by the

fact that the estimates of these parameters are not orthogonal

and the null hypothesis (VA=VD=0) lies on the boundary of

the parameter space (VA50, VD50).13 We have, therefore,

restricted our power calculations to models containing

additive effects only.

Using the exact formula and the adjusted first-order

approximation, we calculated the NCPs of six different types

of pedigrees, for four different genetic models. Genetic models

are specified in terms of fixed components of variances, where

the total phenotypic variance is constrained to unity. The four

models are variations of a QTL model in which the total

genetic QTL variance is accounted for by additive effects

(VA=10%) with either an additional background polygenic

component (VG=40%) or an additional sibling-specific shared

environmental component (VS=20%) or both. Pedigree types

1, 2 and 3 are nuclear families with 2, 3 and 4 offspring,

respectively. Pedigree types 4, 5 and 6 are three-generation

pedigrees (see Figure 1). The number of members of pedigree

types 1, 2, 3, 4, 5 and 6 are 4, 5, 6, 7, 8 and 9, respectively.

The exact and approximate NCPs were translated into the

required number of pedigrees to obtain 80% power at

P=0.0001 for rejecting the null hypothesis of no VA. These

numbers are derived by dividing the critical NCP value (for 1

df, Critical w2=13.8, and Power=0.8) of 20.76 by the NCP of a

particular pedigree. The Critical w2 of 13.8 corresponds to a

LOD-score of 3 and an asymptotic P value of 0.0001.

Table 1 Mean and variance of trait correlation for different
relationships

Relative pair E (p̂) E (ẑ) Var (p̂) Var (ẑ) Cov (p̂ ẑ)

Full-sibs 1/2 1/4 1/8 3/16 1/8
Half-sibs 1/4 0 1/6 0 0
Avuncular
Grandparental
First-cousin 1/8 0 3/64 0 0
Second-cousin 1/16 0 15/1024 0 0

E(rp jk)=E(p)VA+E(z)VD

Var(r p jk)=Var(p)V2
A+Var(z)2

D+2 Cov(p,z)VAVD

European Journal of Human Genetics

Analytic power calculation
FV Rijsdijk et al

337



Results
In Table 1 the first-order approximation of informativeness

for different familial relationships are derived. The first-order

approximation depends on the variance of the number allele

IBD (p), the variance of complete IBD sharing, and their

covariance. The approximate NCP of a particular pedigree

type is simply the sum of the number of different family

relationships, multiplied by their corresponding expected

variance in correlation [Var(rpjk)] and adjustment term

R=(1+r2)/(17r2)2. For example, pedigree 5 with one sib pair,

four grandparental-, two avuncular- and one first-cousin

relationship(s), the NCP is R1*(1/8 V2
A+3/16 V2

D+1/4

VAVD)+R2*6(1/16 V2
A)+R3*(3/64 V2

A), where R1, R2, R3 are

the adjustment terms for sib-pairs (r=1/2VA+1/4VD+1/

2VG+VS), grant-parental/avuncular (r=1/4VA+1/4VG), and

first-cousin relationships (r=1/8VA+1/8VG), respectively. Di-

viding the critical NCP value (20.76) by the NCP of a

particular pedigree (exact or approximate) yields an estimate

for the number of required pedigrees of that type for 80%

power.

The exact, adjusted and unadjusted approximate numbers

for the six pedigree types and four genetic models are shown

in Table 2. The numbers for the unadjusted approximate

power (bold) are the same for all four models since the

estimated NCP will depend only on VA, which is constant

over all models. It is clear that the unadjusted approximation

works reasonably well when the residual correlation (not due

to the QTL) is low (model 1) but that it brakes down when

additional sources of family resemblance are introduced.

In general, the agreement between the exact and adjusted

approximate numbers is good. The largest discrepancy occurs

for model 4, where residual genetic and sibship environ-

mental variances are both substantial. Sib-quad families (Ped

3) are the most efficient, and sib-pair families the least

efficient pedigree structure, under all genetic models.

Sib-trio families provide approximately three times, and

sib-quad families approximately six times the contribution of

a sib-pair family to the likelihood statistic. This increase in

power is independent of the genetic model. Similarly, larger

pedigrees (types 4 ± 6) are also more efficient than sib-pair

Figure 1 The three-generation pedigree types: a, Pedigree 4,
b, Pedigree 5 and c, Pedigree 6.

Table 2 Number of different pedigree types required for
80% power under four genetic models

Model VA VG VS Ped 1 Ped 2 Ped 3 Ped 4 Ped 5 Ped 6

1 10 0 0 16320 5506 2787 3382 3882 2373
16483 5494 2747 3307 3784 2283

2 10 40 0 11937 3946 1966 2774 3373 2031
13738 4579 2289 2985 3509 2104

3 10 0 20 13657 4367 2128 3049 3655 2195
13738 4579 2289 3062 3618 2163

4 10 40 20 8274 2568 1230 2175 2958 1676
8784 2928 1464 2397 3067 1794

Unadjusted approx- 16608 5536 2768 3321 3796 2290
imation for 1 ± 4a

Note: upper values: number of pedigree type for exact power;
lower (italic, bold); number of pedigree type for approximate
power. aNumber of pedigree types for unadjusted approximate
power (bold) are the same for all four models because VA does not
change. Pedigree types are defined in the text and Figure 1.
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families. As Pedigree 4 constitutes fewer individuals than

Pedigree 5 or 6, it can be considered the most efficient

extension to a sib-pair nuclear family.

Discussion
The primary aim of this paper was to obtain an approxima-

tion of the non-centrality parameter for general pedigrees

that can be used to estimate power for QTL linkage analysis.

Generalising from the results of Sham et al,12 a first-order

approximation of the non-centrality parameter for general

pedigrees is determined by the variance of the correlations

between all constituent pairs of relatives denoted by Var(rp).

This variance is determined by the variance in p̂, ẑ and their

covariance and is derived for different types of relationships.

Given the model specific components of variance, the

variance of the trait correlation for each class of relatives

can be calculated. The NCP of a particular pedigree type for

linkage, to a first-order approximation, is simply the sum of

these variances of correlations over all pairs of relatives in the

pedigree. Dividing the critical NCP (for the required

significance level and power) by the NCP of a particular

pedigree (exact or approximate) gives an estimate for the

number of required pedigrees of that type for 80% power.

This first-order approximation of NCP is reasonably

accurate when correlations between relatives are small, but

tend to underestimate the exact values when correlations are

large due either to a major QTL or substantial residual genetic

or shared environmental effects. We have derived a simple

adjustment term for the first-order approximation that shows

a substantial improvement. The adjustment factor is simply

(1+r2)/(17r2)2 where r is the overall correlation for the

relative-pair that is a function of various genetic and

common environmental variance components and the

degree of relationship (equation 4). The NCP per relative

pair is then simply Var(rp̂) multiplied by the adjustment

factor. The total NCP of a pedigree is approximately the sum

of NCP contributions from all possible pairs of relatives in the

pedigree.

Williams and Blangero11 derived a similar approximation

for arbitrary relative pairs via the information matrix, but

their expression does not include dominance or shared

environment. The formula does not give the correct NCP

contribution for monozygotic twins and parent-offspring

pairs (recognised by the authors). With our formula it is clear

that the NCP for MZ twin and parent-offspring pairs is zero,

since the Var(rp̂) is zero for these classes of relatives. Their

formula also does not give the correct NCP for other (remote)

relationships (ie first- and second cousins). The discrepancy

becomes larger as the relationship gets more distant (about

half of the exact value). For example, the exact NCPs for first/

second-cousins under model 2 are 0.000476/0.000147; our

adjusted NCP approximations are 0.000474/0.000147; the

Williams and Blangero approximations are 0.000316/

0.000078.

We have investigated the exact and approximate power for

six pedigree types under four genetic models. In general, the

agreement between the exact and approximate numbers is

good. Informativeness of three extended pedigrees was

compared to that of sib-pair, sib-trio, and sib-quad nuclear

families. The ratios of the numbers of sib-pair, sib- trio and

sib-quad families agree with earlier findings:10 sib-trio

families provide approximately three times, and sib-quad

families approximately six times the contribution of a sib-

pair family to the likelihood statistic. This increase in power

is independent of the genetic model. Larger pedigrees (types

4 ± 6) are also more efficient than sib-pair families. These

results confirm the increase in power with increasing

pedigree size reported in previous studies.1,3,6,10

Although large sibships represent the most efficient

pedigree structure for variance components QTL linkage

analyses,1,6,10 they may not be generally available. The search

for optimal pedigree structures in extended pedigrees beyond

nuclear families could provide an alternative method of

increasing power. While sampling extended pedigrees may

not yield much advantage over sampling sibships, it might

provide a feasible way of enhancing power when large

sibships are not readily available. However, a potential

problem with three-generational pedigrees can arise when

dealing with late-onset disorders, in that it may be difficult to

ascertain complete phenotypic and genotypic information.

Another disadvantage of multigenerational pedigrees is the

introduction of biases due to age or cohort effects (although

this problem may arise in large sibships as well). This,

however, could be adjusted for in variance-component

models by the inclusion of covariates while testing for linkage.

In summary, the agreement between the adjusted first-

order approximation and exact NCPs is very close. The

approximation is therefore a useful tool to estimate the

power of complex pedigree structures when exact calculation

or simulations are not feasible. However, a limitation of both

the exact and approximate methods described here is that

they assume the absence of knowledge on the trait values of

the pedigree members. For this reason, they are not

applicable to pedigrees ascertained to contain members with

extreme trait values (which improves the power to detect

linkage). Further work is necessary to investigate how NCP

can be calculated conditional on the observed trait values of

pedigree members. Methods have been implemented for

calculating NCP conditional on trait data for sibships.14 The

generalisation of this method to pedigrees would represent

the equivalent of the expected Lod score (ELOD) method of

classical linkage analysis, and offers a systematic approach for

optimising the efficiency of QTL linkage studies.
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