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Pedigree tests of transmission disequilibrium

Gonçalo R Abecasis, William OC Cookson and Lon R Cardon
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High-resolution mapping is essential for the positional cloning of complex disease genes. In outbred
populations, linkage disequilibrium is expected to extend for short distances and could provide a powerful
fine-mapping tool. Current family-based association tests use nuclear family members to define allelic
transmission and controls, but ignore other types of relatives. Here we construct a general approach for
scoring allelic transmission that accommodates families of any size and uses all available genotypic
information. Family data allows for the construction of an expected genotype for every non-founder, and 
orthogonal deviates from this expectation are a measure of allelic transmission. These allelic transmission
scores can be used to extend previously described tests of linkage disequilibrium for dichotomous or
quantitative traits. Some of these tests are illustrated, together with a permutation framework for
estimating exact significance levels. Simulation studies are used to investigate power and error rates of the
approach. As a practical application, the method is used to investigate the relationship between circulating
angiotensin-1 converting enzyme (ACE) levels and polymorphisms in the ACE gene using previously
published data. European Journal of Human Genetics (2000) 8, 545–551.
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Introduction
Disease genes can be identified on the basis of their location,
even when the underlying biochemical pathways are
unknown.1 However, in complex disease, confidence inter-
vals surrounding the highest linkage typically extend several
centimorgans2,3 and are too broad for positional cloning.
Although the additional information in large pedigrees4–6

may provide more power than small nuclear families,7,8 the
resolution of linkage analyses remains limited even in
extremely large pedigrees.2

Increasingly large numbers of single-nucleotide polymor-
phisms (SNPs) are available in public and private databases9

and high-throughput methods for their genotyping are
emerging.10,11 While it is unlikely that additional markers
will improve the resolution of traditional linkage analyses,

linkage disequilibrium mapping should have greater resolu-
tion and will benefit from dense SNP maps.12

Family-based association tests can distinguish disequilib-
rium from other types of association due to population
substructure. Previously described methods use parents13–17

or siblings13,18–20 to construct controls that are robust to
stratification and are applicable to dichotomous or quantita-
tive traits.

Intuitively, larger pedigrees include more information on
population substructure than nuclear families, but current
methods of scoring allelic transmission consider only parents
and siblings and ignore other relatives. Linkage disequilib-
rium tests that accommodate not only nuclear family data,
but also other relatives, will be important for refining gene
location in many current studies.

Here, we describe a fast, computationally efficient method
of scoring allelic transmission in extended pedigrees that
considers not only parents and siblings but also all available
ancestors. The method can be used in tests of linkage
disequilibrium for quantitative or qualitative traits. As an
example, power and type I error rates of some of these tests
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are explored by simulation. Also, using a previously pub-
lished data set,21,22 which includes several extended pedi-
grees, we investigate the relationship between polymor-
phisms in the ACE gene and circulating ACE levels.

Methods
Scoring allelic transmission
In the present method, we assume no segregation distortion
(meiotic drive), so that heterozygous parents are equally
likely to transmit either allele to their offspring. In the
presence of population stratification, the distribution of
genotypes (and phenotypes) in each sub-population may be
different. Tests based on allelic transmission should allow for
the most severe form of population admixture where each
individual is drawn from a different sub-population. Typi-
cally, family members are used to construct an expected
genotype for each individual, and deviations from this
expectation (due to excess transmission of a particular
marker allele) are measured.23 Under the null hypothesis of
no linkage disequilibrium, family data allows appropriately
constructed expectations to be unbiased in all sub-popula-
tions. Corresponding deviates are equally likely to indicate a
surplus or deficit of transmission for any allele, whatever the
genetic make-up of each sub-population. Therefore, deviates
can be used to construct tests of linkage disequilibrium.

Consider a candidate di-allelic marker, M, with alleles
arbitrarily designated as ‘1’ (with frequency p) and ‘2’ (with
frequency q = 1 – p). Given a set of N families, define the
marker phenotype mij and the genotype score gij for the jth

individual in the ith family as

mij = number of ‘1’ alleles at locus M, and

gij = mij –1.

Let Mij and Fij represent specific indexes for the male and
female parents of the jth individual in the ith family. If an
individual has no observed ancestors in the pedigree, leave
Mij and Fij undefined. For convenience, define the following
sets for each family i:

(i) the set of genotyped individuals as Gi = {k|gik is
known};

(ii) the set of founders, which includes all individuals with
no observed ancestors in the pedigree, as Ai = {k|{Mik,
Fik} = ø};

(iii) The set of full siblings for each non-founder, j [ Ai, as
Sij = {k|Mik = Mij} > {k|Fik = Fij}.

Using standard set notation, the number of founders in a
pedigree is |Ai| and the number of individuals in a sibship is
|Sij|, of which |Sij > Gi| are genotyped.

In nuclear families, define allelic transmission in terms of
an expected genotype bij and deviate wij where

gFij + gMij

2

Σ gik

keSijùGi

|SijùGi|









bij = bi =

if parental genotypes are known

otherwise

and wij = gij – bij.
13

Positive values of wij indicate excess transmission of allele
‘1’, while negative values indicate excess transmission of
allele ‘2’. Whenever both parents are homozygous at the
marker locus, wij = 0, so that wij  0 implies that at least one
parent is heterozygous. Also, in the absence of segregation
distortion or selection, E(wij) = 0.

Although the previous definition could be used in
extended families, it would ignore the information available
from relatives other than parents or siblings. We will now
present a more general algorithm for defining bij that
considers all available information (although, our interest
remains focused on wij = gij – bij as a measure of allelic
transmission).

Traverse pedigree i, for j = 1 … ni so that each individual j
is preceded by all his ancestors:

(1) If j is a genotyped founder, j [ (Ai > Gi), assign bij = gij

and wij = 0. Proceed to individual j + 1.

(2) If bMij
and bFij

are defined, assign

bMij + bFij

2
bij = and wij = gij – bij.

In a pedigree where all founders are typed, Ai , Gi, this
is equivalent to

bij =Σ 2æijk gik

keAi

for every individual (where æijk is the kinship coeffi-
cient between individuals j and k in family i). Proceed
to individual j + 1.

(3) Otherwise, if j is genotyped, assign

Σ gik

keSijùGi

|SijùGi|
bij = and wij = gij – bij.

Note that, when no genotyped siblings are available,
bij and wij = 0. Proceed to individual j + 1.

(4) Finally if j is not genotyped and bFij
or bMij

are
undefined, leave bij and wij undefined. Proceed to
individual j + 1.

This definition uses as many ancestral chromosomes as
possible to define each bij, but makes no attempt to infer
missing genotypes, as this is fraught with pitfalls.24 Note that
wij  0 implies that individual j has at least one heterozygous
ancestor. The algorithm can accommodate pedigrees of any
practical size but requires negligible computing resources.
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Transmission disequilibrium tests
Using this general approach for scoring allelic transmission,
we now show how the resulting wij values may be used in
different measures of linkage disequilibrium.

Discrete traits
If a single offspring per family is considered, the sum of all wij

has mean zero and variance Σ
ij

w2
ij.

Thus, the statistic 

Σ
ij

wij

Σ
ij

w2
ij

TTDT =

!
is asymptotically distributed as standard normal in the
absence of linkage disequilibrium, and is analogous to the
widely-used TDT test of Spielman et al.16

If multiple affected offspring are considered in each family,
transmissions to family members are not independent and
the set of transmissions from each parent should be treated as
unit.25 In extended families it is not practical to separate
transmission from each founder, but transmissions in each
family may be treated as independent sets. In this case, the
statistic 

! Σ
i

Σ
j

Σ
i
Σ

j

wij

wij

Taffected =
2( )

is asymptotically distributed as standard normal in the
absence of linkage disequilibrium (see Martin et al.25).

If affected and unaffected offspring are considered in each
family, the statistic 

! Σ
i

Σ
j

Σ
i
Σ

j

aijwij

aijwij

Tall =
2
,

( )
is asymptotically distributed as standard normal in the
absence of linkage disequilibrium and includes information
on all family members (aij is an indicator variable for
affection status, defined as aij = 1 for affected individuals,
aij = –1 for unaffected individuals and aij = 0 otherwise.
Other definitions for aij, such as asymmetric weights for
affected and unaffected individuals could be used. Rabino-
witz17 considers weights based on quantitative
phenotypes).

Quantitative traits
Straightforward linear models express expected phenotype
scores, µij, as a function of the overall population mean, µ,
and the marker genotype. Allison14 (TDTQ5) suggested a
linear model with indicator variables for each mating type as

controls for population stratification. Abecasis et al13 showed
a more parsimonious model can be defined using expected
genotype scores, bij, and corresponding deviates, wij:

µij = µ + âbbi + âwwij.

If a single offspring per family is considered, define R2
âw = 0 as

the residual sum of squares when the model is fitted with
âw = 0 and R2 as the residual sum of squares when the model
is fitted with no constraints. Then the goodness of fit statistic

R2 – R2
âw=0

(1 – R2
âw=0)/(K – 3)

FQTL =

is distributed as F with one and K – 3 degree of freedom in the
absence of linkage disequilibrium.

Simple linear regression approaches, such as this one, do
not account for familial correlations, and are only appro-
priate when a single offspring is considered in each family.26

When multiple offspring per family are considered, variance
component models offer a framework for describing family
data.27 In this case, Ωi, a ni x ni matrix of expected variances
and covariances for family i, may be specified according to
the classical biometrical model.28

σ2
a + σ2

g + σ2
e

πijkσ2
a + 2æijkσ2

g







Ωijk =

if j = k

if j  k

where σ2
a is the additive genetic variance of the QTL, σ2

g is the
variance attributable to polygenes, σ2

e is the residual environ-
mental variance, and πijk is the proportion of alleles shared
identical-by-descent (IBD) at the marker locus between
individuals j and k in family i.

Note that the random effect parameters (σ2
a, σ2

g and σ2
e)

account for familiarity and linkage effects, while stratifica-
tion and linkage disequilibrium are modeled in the fixed
effect parameters (âb and âw). The likelihood of the data can
be expressed in terms of the observed phenotypes yi and the
random effects in Ωi and the linear model as 

L = Π(2π)–ni/2|Ωi|–1/2e –1/2[(yi–µi)’Ω–
i
1(yi–µi)].

Define Lo as the maximum likelihood of the data when âw = 0
and L1 as the maximum likelihood of the data when there are
no constraints on the parameters. Then, under the assump-
tion of multivariate normality, 

ø2
QTL = 2 ln (L1/Lo)

is asymptotically distributed as chi-squared with one degree
of freedom.13,19

Permutation framework
Relying on asymptotic theory for estimating significance
levels is undesirable when small samples are considered or
when a quantitative trait is not distributed as multivariate
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normal.27,29 As described above, the pattern of allelic trans-
mission in each family can be expressed as wi = [wi1, wi2, …].
A consequence of the assumption of Mendelian segregation
is that, in the absence of linkage disequilibrium, the observed
pattern of transmission (wi) and its mirror image (–wi) are
equally likely. Construct the random permutation Pr of any
set of N families by replacing each wi with itself or –wi with
equal probability, so that for any given data set there are 2N

different permutations of the data. In the absence of linkage
disequilibrium, the distributions of TTDT, Taff, Tall, FQTL and
ø2

QTL can be estimated by sampling a large number of these
permutations at random.

Simulations
For power and error rate assessments, data were simulated in
two general types of extended pedigrees: (1) a small three-
generation pedigree with all individuals genotyped (Fig-
ure 1A), and (2) a larger three-generation pedigree where no
grandparental genotypes are available (Figure 1B). Fifty pedi-
grees were simulated 1000 times.

For examining the contribution of different types of
relatives to power, three family configurations were exam-
ined: (1) sib pairs, (2) sib pairs with parents, and (3) sib pairs
with parents and grandparents. Sets of 200, 400 or 800 pedi-
grees were simulated 1000 times.

Briefly, trait values were constructed as the sum of poly-
genic (with variance σ2

g) and environmental (σ2
e) effects,

assigned independently from a normal distribution with
mean zero, and a major gene effect (σ2

a), generated by an
additive di-allelic trait locus, Q. A di-allelic marker locus, M,
was simulated at a very small recombination fraction θ. Since
linkage disequilibrium is only expected at short distances in

outbred populations30–32, we consider θ = 0 unless noted
otherwise. The trait and marker loci allele frequencies were
assumed to be pQ = qQ = pm = qm =

1
2.

Linkage disequilibrium between the trait and marker loci
was introduced in the founder chromosomes. Disequilibrium
was modeled in the usual fashion as D = pmQ – pmpQ (pmQ is the
frequency of the haplotype with allele ‘1’ at both the marker
and trait loci, so that Dmax = min(pm,pQ) – pmpQ, and the
standardised equilibrium coefficient D' is D/Dmax.

33

Where noted, population admixture was generated by
mixing families drawn from two populations (A and B) with
different phenotypic means (µA and µB) and marker allele
frequencies (pA = 0.7 and pB = 0.3) in equal sampling propor-
tions. µA and µB were selected such that admixture accounted
for 20% of the total phenotypic variance in the combined
population, that is 

(µA – µB)2

4σ2
= 0.20.

For discrete trait analysis, individuals were arbitrarily
assigned a status of affected (unaffected) when the simulated
quantitative trait score was above (below) the mean. When
analyzing simulated data sets we assumed full identity-
by-descent (IBD) information at the marker locus. In prac-
tical settings, multipoint methods should be able to extract
this information when many markers are screened in a dense
map.

Angiotensin converting enzyme data
The data consist of 553 individuals in 69 British extended
families with no inbreeding. Pedigrees range in size from two
to three generations, including from four to 18 individuals
each. Genotypes are available for approximately 50% of all
founders. Circulating ACE levels were measured for 405 indi-
viduals and standardised separately for males and females.
Ten di-allelic polymorphisms in the ACE gene were
genotyped.21

SimWalk234 was used to estimate multipoint IBD at each
marker. After scoring allelic transmission using the method
described here, evidence for linkage disequilibrium was
evaluated with the ø2

qtl statistic. Evidence for linkage and
complete linkage disequilibrium was evaluated as previously
described,13,19 and lod scores were calculated as ø2/(2 ln10).

Results
Simulations
In the absence of linkage disequilibrium, the Type I error rate
for ø2

qtl, Tall and Taff is compatible with both nominal and
empirical (estimated from 1000 permutations) significance
levels (Table 1). In contrast, the error rates for the TTDT and
FQTL statistics, which assume independent observations, are
very high when nominal significance levels are used. We

Figure 1 Pedigrees used in simulations. In these pedigrees,
transmission can be scored using not only information from
parents and siblings, but also from other types of relatives
such as grandparents and uncles.
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recommend exact significance levels estimated from permu-
tations, as these should guarantee accurate results even in
smaller datasets or with non-normal data.

It is important to note that the additional information
available in the larger pedigree always provides more power
in the presence of linkage disequilibrium (Table 2). In
simulated data, ø2

qtl, which considers all the information
available in a continuous distribution, provided more power
than any other statistic. The Fqtl statistic, which ignores
information due to linkage and familiality, was slightly less
powerful. The Taff and TTDT statistics, which consider only a
small proportion of all available individuals (the affected
descendants of heterozygous individuals), provided little
power in small pedigrees.

As expected, power is very sensitive to the degree of linkage
disequilibrium (Table 2). While all statistics provide reason-
able power when the trait and marker locus are in perfect

disequilibrium (D' = 1.00), almost no power was available for
low levels of disequilibrium (D' = 0.25). In the absence of
linkage disequilibrium (D' = 0), power estimated by simula-
tion closely approximates the expected 0.01 error rate. These
methods provide specific tests of linkage disequilibrium even
in multigenerational pedigrees.

Information on additional relatives, such as parents or
grandparents always increases power for the ø2

qtl or Tall

statistics, but parental genotypes can decrease power for the
Taff statistic (Table 3, along each row). The result is counter-
intuitive, but it is known that scoring of transmission in
discordant pairs can be more efficient than the TDT for traits
with high prevalence.35

For a fixed genotyping effort, simple sib-pair families
always provide more power than other family configurations
(Table 3). Although information from all individuals is used
in scoring transmission, parental and grandparental pheno-
types do not contribute to the linkage disequilibrium statis-
tics, so this is not surprising. Note that, for the ø2

qtl and Tall

Table 1 Error rates are reported as the proportion of
simulations exceeding the 0.05 significance level

Error rates (5% significance level)
Nominal Empirical

Linkage Familiality Stratification Linkage Familiality Stratification

Small 3-generation pedigree
ø2

qtl 5.6 4.4 5.8 6.0 4.6 5.6
Fqtl 14.5 12.1 8.5 4.5 4.6 5.6
Tall 5.2 4.4 4.0 6.1 4.9 4.7
Taff 4.5 4.7 4.9 5.0 5.5 5.1
TTDT 20.1 20.3 19.5 4.8 5.4 5.0

Large 3-generation pedigree
ø2

qtl 4.8 4.9 4.7 4.3 5.3 6.2
Fqtl 11.0 5.2 6.1 4.4 4.7 5.5
Tall 4.9 4.2 4.8 5.5 4.4 5.5
Taff 4.3 4.0 4.6 4.8 4.3 4.9
TTDT 4.9 3.2 4.0 5.1 4.8 5.4

Datasets with 50 pedigrees (Figure 1) were simulated, under the null
hypothesis of no disequilibrium, in the presence of large linkage
(σ2

a = 0.5, θ = 0) or familial (σ2
g = 0.5) effects, or population

stratification (see text). Empirical significance levels were estimated
from 1000 permutations of each dataset (see text).

Table 3 Family Structure. Power is reported as the proportion of simulations exceeding the 0.0001 nominal significance level

Power at 0.0001 significance level (number of genotypes)
No of Families Sib pair Sib pair with parents Sib pair, parents and grandparents

ø2
qtl 200 13.3 (200) 33.8 (400) 90.2 (800)

400 52.9 (400) 86.2 (800) 100.0 (1600)
800 96.1 (800) 100.0 (1600) 100.0 (3200)

Tall 200 1.3 (200) 7.2 (400) 44.4 (800)
400 13.1 (400) 45.8 (800) 94.5 (1600)
800 60.5 (800) 94.5 (1600) 100.0 (3200)

TTDT 200 1.2 (200) 1.8 (400) 4.5 (800)
400 12.8 (400) 10.7 (800) 26.1 (1600)
800 60.7 (800) 49.9 (1600) 78.6 (3200)

Different family configurations and sample sizes were examined, and the total number of individuals genotyped in each case is given in (parenthesis).
A high level of disequilibrium between trait and marker loci (D’ = 0.75) was introduced. The major locus had a small effect (σ2

a = 0.1) and was tightly
linked to the marker (θ = 0.0001). Background familial effects (σ2

g = 0.5) were present.

Table 2 Power is reported as the proportion of simulations
exceeding the 0.01 empirical significance level

Power (1% empirical significance level)
D’ 0.00 0.25 0.50 0.75 1.00

Small 3-generation pedigree
ø2

qtl 0.6 7.8 33.5 76.5 98.4
Fqtl 0.7 6.2 22.2 60.1 92.1
Tall 1.2 4.4 14.3 42.7 76.2
Taff 0.7 1.7 4.1 7.5 15.8
TTDT 0.7 2.5 4.5 10.1 21.0

Large 3-generation pedigree
ø2

qtl 0.6 16.4 73.3 99.1 100.0
Fqtl 0.9 12.0 64.7 96.7 100.0
Tall 0.6 7.4 37.9 77.9 96.2
Taff 1.3 5.4 20.7 53.6 85.2
TTDT 0.9 5.2 23.4 58.0 88.5

Datasets with 50 pedigrees (Figure 1) were simulated, for varying
levels of disequilibrium between trait and marker loci. The major locus
had a small effect (σ2

a = 0.1, θ = 0) and background familial effects
(σ2

g = 0.5) were present. Empirical significance levels were estimated
from 1000 permutations of each dataset (see text).
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statistics, the efficiency of the sib pair with parents and the
sib pair, parents and grandparents designs are roughly
equivalent.

ACE data
The ACE locus is strongly linked to ACE levels (Table 4,
Linkage columns, lod  7.18) and all the polymorphisms
examined by Keavney et al21 show strong evidence for
association when the ø2

qtl statistic is used (Table 4, Association
columns, lod  9.86). Evidence for association is strongest at
the I/D polymorphism (lod = 15.76, which was not exceeded
in 1 million permutations of the data). The evidence for
additional linked factors when association is included in the
model (Table 4, Additional effects columns) can be used to
determine whether a polymorphism is in complete dis-
equilibrium with the trait alleles.19,36 In Table 4, there is no
evidence for additional linked effects when markers G2215A,
I/D or G2350 are considered (lod  0.05). The data suggest
these polymorphisms are in complete disequilibrium with
the trait alleles (and could be the trait alleles themselves).

Discussion
We have shown that allelic transmission can be scored in
extended pedigrees, incorporating information not only
from parents and siblings but also from other ancestors.
These allelic transmission scores can be used to construct
tests of linkage disequilibrium in general pedigrees and may
be useful in refining the location of complex disease genes. As
it is notoriously difficult to replicate linkage findings in
complex disease,37 the possibility of using the same family
data sets to establish an original linkage by allele-sharing
analysis and fine mapping by association analysis seems
attractive.

By simulation we have shown that tests based on these
transmission scores are unbiased in presence of familiality,
population stratification or mere linkage, and are thus tests of
linkage disequilibrium. A permutation framework for exam-
ining non-normal quantitative trait data or small datasets is
also illustrated. Since transmissions to each family are
considered (and permuted) as a whole, the test may be

conservative in small datasets. It would be desirable to
consider transmission from each founder separately, but in
practice this is difficult.25

The method was applied to a published dataset of extended
pedigrees, and our results agree with the comprehensive
haplotype analysis of Keavney et al21 and Farrall et al.22 The
original haplotype analysis shows the trait alleles are located
in a haplotype defined by polymorphisms T1237G, G2215A,
I/D, G2350A and 4656CT(3/2). The present transmission
disequilibrium analysis suggests that the trait alleles are
indistinguishable from polymorphisms G2215A, I/D and
G2350A.

Proceeding from gene localisation to a broad chromosomal
segment to localisation to a smaller segment and gene
identification is a daunting task. This approach and others
currently under development38 extend the usefulness of
linkage disequilibrium mapping to large pedigrees. Further
research, including a comparison of these approaches in
terms of speed, population assumptions and parameter
interpretations, would be helpful to investigators.
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