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A likelihood-based extended admixture model of
oligogenic inheritance in ‘model-based’ and
‘model-free’ analysis
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The admixture test of linkage heterogeneity is the most often and most successfully applied
oligogenic-model linkage and/or LD analysis method. Full two-locus model linkage analysis is possible, but
can be computationally intensive and difficult to interpret because of the need to specify so many
indeterminate parameters. A novel, computationally efficient method is proposed for combining single
locus lod scores which can allow for varying degrees of epistatic interaction. This method can be applied
to two-point or multipoint (using complex-valued recombination fractions) linkage and/or linkage
disequilibrium analysis to jointly test for multiple unlinked disease loci. Unlike the traditional admixture
test, this algorithm permits joint analysis of multiple disease loci with different modes of inheritance for
each, and can be applied to ‘model-free’ analysis as well through the use of ‘pseudomarkers’. Software is
available for computation of the various likelihood ratio tests described, for comparison of a variety of
possible hypotheses regarding locus homogeneity, locus heterogeneity, and epistasis. European Journal of
Human Genetics (2000) 8, 399–406.

Keywords: oligogenic inheritance; admixture test; linkage heterogeneity; two-locus models; linkage
disequilibrium analysis; complex disease

Introduction
Traditional lod score analysis of monogenic disease has been
plagued by sensitivity to locus heterogeneity. Such diseases as
retinitis pigmentosa1 and nonsyndromic hereditary deaf-
ness2 can be caused deterministically by genotypes of any of
a large number of different loci, often with different modes of
inheritance for each.3 To this end, methods have been
developed for multi-locus linkage analysis which stratify
families according to which disease gene is segregating in
each family, assuming one and only one locus per family has
risk genotypes segregating. In the case of simple diseases with
a deterministic monogenic etiology, this can be a very
powerful approach. However, for more complex disorders,
there is likely to be a substantially larger number of loci with
genotypes that influence disease phenotypes, with the

marginal effects of any single genotype at any single locus
having minimal effect in the population as a whole.4 It may
be that only in combination with specific constellations of
environmental factors and risk genotypes of other loci will
there be an influence of a given locus on the phenotype.3,5–8

In such cases, the admixture model described above may not
capture any possible existing evidence of linkage or LD very
effectively.9

Parametric two-locus model analysis of linkage and linkage
disequilibrium (LD) jointly has been applied successfully in a
study of multiple sclerosis on a set of multigenerational
pedigrees from Finland,10 in which a full set of two-locus
genotype/phenotype relationships (ie penetrances) was fully
specified and the likelihood of different hypotheses about
linkage and LD jointly were computed. This approach is
practical and efficient only when there is a specific and well
characterized parametric penetrance model of hypothesized
epistasis11 as this approach is computationally very intensive.
In this manuscript, an extension of the admixture test12 is
proposed, which captures much of the information about
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epistatic interactions when they exist, with greatly reduced
computational and theoretical burdens. The proposed
method can be easily extended to joint analysis of numerous
mutually unlinked disease-predisposing loci under a wide
variety of models of epistasis and heterogeneity alike. In the
case of model-free analysis, it will further be shown to be
equivalent to a full multi-locus pseudomarker analysis.9,13

Likelihood model for linkage and/or LD analysis
In a traditional single-locus analysis (where single locus here
refers to the assumed mode of inheritance of the disease), one
is interested in computing the joint probability of the
observed marker locus genotypes, GM, and the observed trait
phenotypes, Ph, for all individuals in a dataset, as a function
of some hypotheses about linkage and/or LD. P(GM,Ph) is
proportional to the likelihood, such that the lod score

= log10
θ

P(GM,Ph)

P(GM)P(Ph)
Z = log10

max L (θ)

L(θ = 0.5)

as a function of the recombination fraction, θ, and a linkage
disequilibrium ø2 statistic

max L (δ)

L(δ = 0)
= 2ln δ

P(GM,Ph)

P(GM)P(Ph)
Λ = 2ln

as a function of the vector of linkage disequilibrium coeffi-
cients, δ, correlating disease and marker loci.3,13,14

In a model-based linkage analysis, one decomposes the
likelihood as

P(GM,Ph) = P(Ph|GM)P(GM) = P(GM)ΣP(Ph|GD)P(GD|GM),
GD

taking the sum over all possible vectors of disease locus
genotypes, GD, for all individuals in the dataset. P(GM) is a
function of the assumed model for the marker-locus geno-
type frequencies in the population, P(Ph|GD) is a function of
the assumed penetrance model (or means and variances in
the case of a quantitative trait), and P(GD|GM) is a function of
linkage and/or LD between disease and marker loci. For more
precise details of the parameterization of the likelihood as a
function of these probabilities, see Göring and Terwilliger
(2000C,D).13,14

Admixture test, two disease loci, one marker locus
In the simplest model of locus heterogeneity, some individ-
uals are assumed to be affected with the disease because of
genotypes of one particular gene, and other individuals are
affected for independent reasons. In practice, one can
formally describe this situation in terms of the genotype–
phenotype relationships (ie penetrances) at a single disease
locus. If we assume a dominant mode of inheritance, 

P(Affected|DD) = P(Affected|D+) = kf; P(Affected|++) = f,

where f is the probability of being affected for some reason
other than the disease locus under study, and 

P(Affected|DD or D+)
P(Affected|++)

k =

is the relative risk of being affected given the presence of at
least one D allele at this disease locus. Heterogeneity due to a
mixture of independent etiological factors is implicit in the
analysis. It is further assumed that the causes of disease other
than risk genotypes of the disease gene being modeled are
not familially correlated.

If the penetrances of genotypes of a single locus are
substantial, and the frequencies of the risk genotypes are
small, one can allow for heterogeneity between multiple
familial causes of disease by explicitly modeling a mixture of
family types – one family type (with proportion α) in which
the disease is caused by genotypes of one disease gene, and a
second family type (with proportion 1 – α) where the disease
is caused by some completely different familial risk factor, as
is the case in many forms of retinitis pigmentosa.3 The
likelihood can then be written as 

L~P(Ph,GM) = aΣP(Ph|GD)P(GD|GM)P(GM)

+(1–a)ΣP(Ph|GD)P(GD)P(GM).
GD

GD

In the latter term it is implicit that there is some familially
transmitted risk factor that is independent of the marker
locus in a proportion 1 – α of families, be it genetic or
environmental.

If we generalize this to two disease genes, either of which
may be potentially linked to a given marker locus, we can
compute the likelihood by partitioning over all possible
genotypes of both disease loci jointly as 

P(GM,Ph) = P(GM)ΣΣP(Ph|GD1,GD2)P(GD1,GD2|GM).
GD1 GD2

If affected individuals in any single family have risk
genotypes at either D1 or D2, but not both (note that this is a
simplifying approximation, since it is assumed that the risk
genotypes of either locus are sufficiently rare that only one is
segregating per family), then this can be rewritten as 

P(GM) (P(D1 segregating)ΣP(Ph|GD1)P(GD1|GM)

+P(D2 segregating)ΣP(Ph|GD2)P(GD2|GM)),
GD1

GD2

which is the standard heterogeneity likelihood formation in
the admixture test.12,15 If α1 = P(Di segregating) and 

Li(θi) =ΣP(Ph|GDi)P(GDi,GM),
i

then setting α2 = 1 – α1, reduces the equation to 

P(GM,Ph)~L(θ1,θ2,α1) = α1L1(θ1)+(1-α1)L2(θ2)

Note that the marker locus could be linked to either D1, D2,
or both in this formulation.

Various tests of linkage and/or heterogeneity can be
conducted by comparing the likelihoods under different
hypotheses, as enumerated in Table 1a. The first row gives the
likelihood when the marker loci are linked to both D1 and D2,
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as was the case with X-linked retinitis pigmentosa.16 The next
three lines enumerate the likelihood of the admissible
hypotheses when the marker locus is unlinked to D2, and the
last three rows assume the marker locus is unlinked to D1. If
we assume the same mode of inheritance parameters at both
D1 and D2, then, without loss of generality, we can focus on
tests of linkage and/or LD between the marker and D1, as
outlined in Table 1b.

This is the simplest two-locus model of disease that can be
incorporated in linkage and/or LD analysis, representing the
most extreme statistical interaction possible. This may sound
counterintuitive, so consider what the assumptions imply, in
the context of a full two-locus model. Define the (2-locus)
genotype–phenotype relationship and the prior (2-locus)
genotype probabilities for random individuals in the popula-
tion. In the case of the heterogeneity model above, assuming
the same mode of inheritance for each of the two loci, P(D
allele at either locus) = p, and (assuming a dominant model
as above), P(affected|D1D1) = P(affected|D1 + 1) = P(affec-
ted|D2D2) = P(affected|D2 + 2) = kf, and P(affected| + 1 + 1)
= P(affected| + 2 + 2) = f. Because there is an implicit assump-
tion that the D alleles are individually very rare, heterogene-
ity analysis assumes that in any given individual, only risk
alleles at either D1 or D2 can be present, consistent with the
penetrance and genotype frequency matrices shown in
Table 2a (note that α is a function of the difference in
frequencies of the disease-predisposing alleles of the two loci,
not the genotype–phenotype relationship, as illustrated in
Table 2a). The posterior genotype probabilities for a single

affected individual are shown in Table 2b.9 Because the
disease-predisposing alleles at either locus are assumed to be
extremely rare, other affected individuals in the same
pedigree as a proband are inferred (a second level of hand-
waving approximation) to have either the same disease-
predisposing allele at the same locus, or none at all. Under
these restrictive simplifying assumptions, the heterogeneity
analysis is computationally efficient and can lead to
increased power to find linkage with heterogeneous dis-
orders. Note that the effects of locus heterogeneity on the
recombination fraction estimates are analogous to those due
to errors in the prediction of underlying disease-locus
genotypes conditional on observed phenotypes.17,18

Admixture model: two disease loci, two unlinked
marker loci
One can generalize the admixture model to include markers
linked to each of the two disease loci. If GM consists of a set
of two unlinked marker loci (M1 and M2), it is possible that D1

is linked to M1 and D2 is linked to M2. In this case, the
likelihoods shown in Table 1a and the tests outlined in
Table 1b are directly applicable, where M would represent the
set (M1, M2), and the statistics outlined would refer to the
model where D1 and D2 are assumed to be linked to
independent markers in the set M. Multiple test corrections
would be indicated when many marker loci are tested
individually, as in a genome scan experiment, however.9,19,20

Nevertheless, it is clear that one can extend these admixture
models to any number of marker loci and any number of

Table 1a Admixture test hypotheses outlined (one locus maximum per family)

Locus D1 Locus D2
Segregating? Linked? Segregating? Linked? Likelihood

Yes Yes Yes Yes L(a1,u1,u2) a1L1(u1)+(1–a1)L2(u2)

Yes Yes Yes No L(a1,u1,u2=1⁄2) a1L1(u1)+(1–a1)L2(u2=0.5)
Yes Yes No L(1,u1) L1(u1); (a1=1)
Yes No No L(1,u1=1⁄2) L1(u1=0.5)

Yes No Yes Yes L(a1,u1=1⁄2,u2) a1L1(u1=0.5)+(1–a1)L2(u2)
No Yes Yes L(0,u2) L2(u2); (a1=0)
No Yes No L(0,u2=1⁄2) L2(u2=0.5)

Table 1b Possible likelihood ratio tests of linkage between marker and trait locus 1

LRT statistic Approx. distribution

Linkage and homogeneity 0.5x2
(1)

Linkage allowing for heterogeneity 0.5x2
(1)+0.25x2

(2)

D2 unlinked to M

Linkage allowing for heterogeneity 0.5x2
(1)

D2 linked to M

L=2 ln

L=2 ln

L=2 ln

L(a1=1,u1)
L(a1=1,u1=1⁄2)

L(a1,u1,u2=1⁄2)
L(a1=1,u1=1⁄2,u2=1⁄2)

L(a1,u1,u2)
L(a1,u1=1⁄2,u2)˜ ˜

ˆ

ˆˆ

ˆˆˆ
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disease loci, and formulate likelihood ratio test statistics
through generalization of this model. See Ott21 for an
exhaustive enumeration of statistical tests based on the
likelihood, 

P(Ph,GM)~L =ΣαiLi(θi).
i

Common alleles and complex traits: oligogenic models
In the simple admixture test, the assumption was made that
alleles at each disease locus are rare and sufficiently penetrant
that an affected individual was likely to carry disease-
predisposing alleles at one and only one of the disease loci,
which would imply that the same allele causes the disease in
affected relatives as well. However, for common multi-
factorial diseases, this may be an irrational and unjustified
assumption.22–25 The simple admixture test of locus homoge-
neity still has a meaningful application, but the subdivision
of families into two types – the first carrying risk alleles of one
locus and the second carrying risk alleles of a second locus –
does not. When risk alleles are common, the assumption that
families segregate disease-predisposing alleles at one of two
loci, but not both, is the extreme statistical interaction one
can hypothesize – equivalent to the ‘XOR’ model of Lucek
and Ott26 – a mode of inheritance that may be biologically
inappropriate for most traits.

If there is epistasis, genotypes of one disease locus may
differentially influence the probability of an observed pheno-
type conditional on the genotypes of a second locus. The
most extreme case would be a model where only individuals
with risk genotypes at both loci can be affected. Such models
imply that families in which risk alleles are segregating at D1

would also have risk alleles segregating at D2. If there are
other potential causes of disease, but D1 and D2 can only
affect the disease when risk genotypes of both loci are
present, then those individuals without risk genotypes of D1

would not be likely to have risk genotypes at D2 either. If we

restrict our set, M, of marker loci to two markers, M1 and M2,
where M1 is linked to D1, and M2 is linked to D2, with D1 and
D2 unlinked to each other, then we can write the likelihood
as 

P(Ph,GM) = P(Ph,GM1,GM2)

= Σ ΣP(Ph|GD1,GD2)P(GD1,GD2|GM1,GM2)P(GM1)P(GM2).
GD1 GD2

Let us assume a multiplicative dominant mode of inher-
itance such that P(Ph|GD1

,GD2
) = ΓD1

ΓD2
, where

ΓDD = ΓD+ = kΓ++ ; and P(GDi
|GMi

) is a function of linkage
and/or LD between loci Di and Mi. Without loss of generality,
we can set Γ++ = cf, where f = P(Affected| + + ) as in the single
locus dominant model described above, such that
ΓDD = ΓD+ = kcf, where c is some constant of proportionality.
The full two-locus penetrance matrix in Table 3 would
obtain. Note that under this multiplicative model, P(Af-
fected| + 1 + 1, + 2 + 2) = c2(f)(f) = c2 P(Affected| + + at locus
1)P(Affected| + + at locus 2).

If we define the single locus marginal penetrance model
such that P(Affected|DD) = P(Affected|D + ) = kf, then P(Af-
fected|D1D1,D2 + 2) = c2 (kf)(kf) = c2P(Affected|DD at locus
1)P(Affected|D + at locus 2).

In each such two-locus penetrance, the identical multi-
plicative factor c2 occurs, which can be factored out of the
likelihood as a constant of proportionality (see below).

We can rewrite the likelihood from above as follows, where
P(Ph|GD1

) is a function of the single locus marginal pene-
trances, and C(c2) is the constant of proportionality which
disappears in the likelihood ratio: 

L~P(Ph,GM1,GM2)=C(c2)Σ ΣP(Ph|GD1)

P(Ph|GD2)P(GD1,GD2|GM1,GM2)P(GM1)P(GM2).
GD1 GD2

Thus, the likelihood can be computed as a function of the
single locus marginal penetrance models. Note that it is not
necessary for the disease loci to have the same marginal
mode of inheritance. In this formulation, unaffected individ-
uals will have somewhat different genotype–phenotype
relationships than the pure multiplicative model would
dictate, but for complex traits, the information unaffected
individuals provide about the underlying genotypes, GD, is
minimal, since k and f are both typically small for multi-
factorial phenotypes. Allowance for a mixture of family types
will alleviate this to some extent, and will allow for a variety
of models that are not strictly multiplicative.

Table 2a Two-locus penetrance and genotype frequency
model assumed in heterogeneity admixture test (dominant
model with penetrance ratio k (see text)

Penetrances Genotype frequencies
D1D1 D1+1 +1+1 D1D1 D1+1 +1+1

D2D2 ? ? kf D2D2 0 0 (1-a) p2

D2+2 ? ? kf D2+2 0 0 (1-a) 2p(1-p)
+2+2 kf kf f +2+2 ap2 a2p(1-p) (1-p)2

Table 2b Probabilities of each two-locus genotype con-
ditional on affection status and the mode of inheritance
described in Table 2a, where v = k + (1-k)(1-p)2

Genotype probabilities for affected proband
D1D1 D1+1 +1+1

D2D2 0 0 (1-a)kp2/v
D2+2 0 0 2(1-a)kp(1-p)/v
+2+2 akp2/v 2akp(1-p)/v (1-p)2/v

Table 3 Multiplicative penetrance model in which
P(AffectedD1D1,D2D2) = ΓDDΓDD; ΓDDΓD+ = κΓ++, and Γ++ =
cP(AffectedDD in a single locus model) = cf

Penetrances
D1D1 D1+1 +1+1

D2D2 κ2(cf)2 κ2(cf)2 κ(cf)2

D2+2 κ2(cf)2 κ2(cf)2 κ(cf)2

+2+2 κ(cf)2 κ(cf)2 (cf)2
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Common alleles and complex traits: extended
admixture models
In the formulation of the two-locus likelihood in terms of the
marginal penetrances, the term P(GD1

,GD2
|GM1

,GM2
) is not

straightforward to compute. However, one can approximate
a two-locus analysis by an extension of the admixture test in
which some proportion of families would segregate both D1

and D2(â12), some proportion would segregate D1 but not
D2(â1), some proportion would segregate D2 but not D1(â2)
and some proportion would segregate neither D1 nor
D2(â0 = 1 – â12 – â1 – â2). It is proposed that the likelihood be
computed by partitioning over the possible family types,
weighted by the âi, which is valid when the marker loci (M1

and M2) are unlinked to each other, as P(Ph,GM1
,GM2

) =

â12 Σ P(Ph|GD1)P(GD1,GM1) Σ P(Ph|GD2)P(GD2,GM2)

+â1 Σ P(Ph|GD1)P(GD1,GM1) Σ P(Ph|GD2)P(GD2)P(GM2)

+â2 Σ P(Ph|GD1)P(GD1)P(GM1) Σ P(Ph|GD2)P(GD2,GM2)

+â0 Σ P(Ph|GD1)P(GD1)P(GM1) Σ P(Ph|GD2)P(GD2)P(GM2)

GD1

GD1

GD1

GD1

GD2

GD2

GD2

GD2











 












C(c2)

Since the likelihood,

L1(θ1) ~ Σ P(Ph|GD1)P(GD1,GM1), and L1 (θ1=1/2) ~

Σ P(Ph|GD1)P(GD1)P(GM1),
GD1

GD1

the overall likelihood, as a function of the âi, reduces to

L(â12,â1,â2,θ1,θ2) = â12L1(θ2)L2(θ2)+â1L1(θ1)L2(θ2= 1/2)+
â2L1(θ1 = 1/2)L2(θ2)+(1–â1–â2–â12)L1(θ1 = 1/2)L2(θ2 = 1/2),

a function of the single-locus model homogeneity like-
lihoods, L1(θ1) and L2(θ2), and the âi. Varying the âi can cover
a wide range of possible two-locus models based on the fixed
marginal mode of inheritance assumptions used in the single
locus likelihood computations. If one sets â12 = 0 and â0 ( = 1
– â1 – â2 – â12) = 0, the likelihood is proportional to that
computed in the conventional admixture test of locus
homogeneity. Furthermore, if one hypothesized a model
with two disease loci, each linked to one of the marker loci,
and a third class of families not linked to either of the loci,
that could be achieved by setting â12 = 0 alone (see Table 4),
and letting â1, and â2 vary freely (see Table 4).

One can formulate the likelihood in terms of the marginal
heterogeneity parameters α1 and α2, which were defined
above in context of the conventional admixture test, by
removing the restriction that each family can have no more
than one of the two disease loci segregating. If the segrega-
tion of the two loci were independent, conditional on the
ascertainment, then â12 = α1α2, â1 = α1(1-α2), etc, as outlined
in Table 4 (independent segregation model). Finally, one can
add an interactive parameter ê, as shown in the last column
of Table 4 (general model) which allows the âi to vary in an
unconstrained manner. For example, if parameters were
chosen such that α1 = α2, and ê = α1(1-α2) then there would
be only two classes of families – those with disease-
predisposing alleles at both D1 and D2 segregating, and those
with disease-predisposing alleles at neither D1 nor D2 segre-
gating – very strong epistasis. If the presence of risk alleles at
one locus has no influence on the probability of risk alleles at
the second locus, a pure heterogeneity model results (ie
ê = 0). Note that if the risk alleles are common, the probabil-
ity of both loci segregating in the same family cannot
reasonably be set to zero, as they are in the conventional
admixture test.

Table 4 Set of possible hypotheses that can be tested with the 2-locus extended admixture test

Locus 1 Locus 2 Other
Linked? Linked? Locus? df Hypothesis b12 b1 b2 b0

Null hypothesis
No No No 0 No linkage 0 0 0 1

Single locus linkage with homogeneity
Yes No No 1 D1: Homogeneity 0 1 0 0
No Yes No 1 D2: Homogeneity 0 0 1 0

Single locus linkage with admixture
Yes No Yes 2 D1: Heterogeneity 0 a1 0 1-a1

No Yes Yes 2 D2: Heterogeneity 0 0 a2 1-a2

Two-locus model linkage with extended admixture
Yes Yes No 3 D1 and D2 Admixture 0 a1 1-a1 0
Yes Yes Yes 4 D1 and D2 Admixture and Heterogeneity 0 a1 a2 1-a1-a2

Yes Yes Yes 4 D1 and D2 Independent a1a2 a1(1-a2) (1-a1)a2 (1-a1)(1-a2)
Yes Yes Yes 5 D1 and D2: General Model a1a2+j a1(1-a2)–j (1-a1)a2–j (1-a1)(1-a2)+j
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Whilst a wide variety of intermediate levels of epistasis are
allowed for in this model, it must be remembered that they
represent an approximation to a complete two-locus para-
metric analysis. It can capture most, if not all, of the
correlative information which exists, when (as is typically the
case) one cannot accurately specify the mode of inheritance
with sufficient accuracy to even conceptualize an appropriate
complete two-locus penetrance matrix. Furthermore, the
computational time is dramatically reduced from a full two-
locus analysis, and can be performed in a matter of seconds
after the initial two-point likelihoods have been computed.
Table 4 outlines the statistical framework for a range of
hypothesis testing.

Extension of this approach to more than two trait loci is
immediate and straightforward, allowing for as many
unlinked disease loci as one desires. For example, in the case of
three disease loci, the likelihood could be computed as 

L(â,θ) = â123,L1(θ1)L2(θ2)L3(θ3)+â12L1(θ1)L2(θ2)L3(θ3 = 1/2)
+â13L1(θ1)L2(θ2 = 1/2)L3(θ3)+â23L1(θ1 = 1/2)L2(θ2)L3(θ3)

+â1L1(θ1)L2(θ2 = 1/2)L3(θ3 = 1/2)+â2L1(θ1 = 1/2)L2(θ2)L3(θ3 = 1/2)
+â3L1(θ1 = 1/2)L2(θ2 = 1/2)L3(θ3)+â0L1(θ1 = 1/2)L2(θ2 = 1/2)L3(θ3 = 1/2).

Extension to more trait loci in a single analysis can be
made, by direct and straightforward induction, in which all
possible pairs of nested hypotheses can be compared using
likelihood ratio tests, computing profile likelihoods over the
nuisance parameters where appropriate14 As the number of
loci increases, the number of admissible models of epistatic
interaction correspondingly increases, such that some a priori
formulation of sets of hypotheses based on biological
pathways may be advised to target the analyses towards more
likely hypotheses, in order to reduce the deleterious effects of
multiple testing.

Unlike traditional single locus admixture models, one can
use different mode of inheritance assumptions for each of the
loci being analyzed, since the multiplicative penetrance
model assumption does not restrict anything about the
underlying single locus penetrance models, and in this
framework, one could jointly analyze, say, a dominant locus
on chromosome 5 and a recessive locus on chromosome 6,
together with a sex-linked susceptibility locus, so long as the
likelihood under the several models are combined multi-
plicatively under null and alternative hypotheses alike. These
analyses can be performed using either two-point or multi-
point likelihoods, so long as appropriate corrections for
multiple testing are taken into account.

Complex-valued recombination fractions and complex
traits
Let us extend this model to allow for errors in the mode-
of-inheritance assumptions in an analysis. If one knows the
genotypes of some trait locus unambiguously, then the
likelihood L  P(GM,GD) = P(GD|GM)P(GM).

However, when the trait locus genotypes cannot be
accurately determined, one computes a weighted average of
the likelihoods as a function of some assumed mode of
inheritance parameters as 

L~P(GM,Ph) = ΣP(Ph|GD)P(GD,GM).
GD

When the model is inaccurate, the weights will be mis-
specified and there will be substantial probabilities for
misclassifying genotypes of the trait locus. One way to deal
with this, as described by Göring and Terwilliger17 would be
to explicitly allow for such errors in the analysis.

If we assume that misclassifying the genotype of the trait
locus causes a recombinant to be misclassified as a non-
recombinant and vice versa, then one can assume that there
is a mixture of meiotic types, where the probability ε, the
recombination status is misclassified. The probability of an
observed recombinant would then be ε(1 – θ) + (1 – ε)θ.17

Note that this is analogous to the admixture model for
heterogeneity among families in which α = P(disease gene is
segregating in the family), and the likelihood of a family is
αP(family|linkage) + (1-α)P(family|no linkage). The only dif-
ference is that the heterogeneity is within families, across
meioses, and is solely a function of how well the assumed
disease model fits the observed segregation pattern. One
should note that ε is analogous to a recombination fraction
in a direction orthogonal to the chromosome, ie it estimates
the frequency with which assumed trait locus genotypes do
not cosegregate with the chromosomal position at which the
trait locus resides. It is convenient to think of the recombina-
tion fractions with misclassification as having two compo-
nents, the ‘real’ recombination fraction, θ, between the
actual genotypes of the trait and marker loci, and the
‘imaginary’ recombination fraction, ε, between the actual
and observed trait locus genotypes, which can be expressed
as a complex recombination fraction Θ = θ + εi, to demon-
strate the orthogonality of the two components, and their
interpretations as probabilities of ‘real’ and ‘imaginary’
recombination.

Göring and Terwilliger17 proposed using such a model to
minimize the effects of inaccurate mode of inheritance
assumptions in multipoint parametric linkage analysis, and it
has been demonstrated13 that lod scores of the form

max L(x,ε)

L(x,e = 0.5)
εe(0,0.5)Z (x,ε) =

have similar genome-wide behavior as model-free statistical
tests. As an interesting note, it was shown9 that in the
context of this model, it is always better to assume a mode of
inheritance model that is too strong (ie in which genotypes
predict phenotypes more deterministically than they actually
do) in terms of both power and accuracy of the estimates of
location of the underlying disease locus. In conjunction with
the general model of intrafamilial heterogeneity and epistasis
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presented here, even more robustness to errors is likely,
though there may be enormous support intervals for gene
location as is unavoidable in analysis of complex traits with
many (often confounded) parameters in the model.

Model-free extended admixture analysis of multiple
trait loci
In model-free analysis, one computes the likelihood L 
P(Ph,GM) = P(GM|Ph)P(Ph), where, in the likelihood ratio,
P(Ph) cancels out, as the ascertainment scheme makes the
restriction that one exclusively samples pedigrees (or individ-
uals) of a single structure (ie affected sib pairs, triads, or
singletons). In this case, one can directly estimate all possible
multinomial proportions P(GM|Ph).13 In the case of two-locus
analysis, one can compute the likelihood of two unlinked
markers (or sets of markers in multipoint analysis) jointly as
P(GM1

, GM2
|Ph). One can likewise stratify this by the probabil-

ity that disease loci linked to either or both marker loci are
segregating in a given pedigree as P(GM1

,GM2
|Ph) =

â12P(GM1
,GM2

|Ph) + â1P(GM1
|Ph)P(GM2

) + â2P(GM1
)P(GM2

|Ph)
+ â0P(GM1

)P(GM2
).

As in model-based linkage analysis, one can consider all
possible models outlined in Table 4, though the number of df
depends on the number of parameters involved in P(GM1

|Ph)
and P(GM1

). Such analysis is a generalization of the common
technique of stratifying a dataset based on whether there is
linkage (or association) with one locus, in an attempt to
identify additional loci for some disorder.27

In many cases, one has not ascertained a single data
structure, yet ‘model-free’ analysis is desired because of
uncertainty about the true mode of inheritance. In most of
these cases, it is assumed that there will be multiple disease-
predisposing loci as well, so it would be advisable to allow for
their existence. One technique for robust combination of
data structures in a single ‘model-free’ analysis would be to
convert the observed disease phenotypes, Ph, into ‘pseudo-
marker’ genotypes, GP followed by likelihood-based linkage
and/or LD analysis.9,13,28 Pseudomarker analysis involves
computing pedigree likelihoods under the assumption that
all meioses connecting affected individuals in a pedigree are
informative for linkage with equal probability. It has been
demonstrated that this is statistically equivalent to the
affected sib-pair mean test on sibpair data structures,29 and to
affected relative pair methods on more distantly related pairs
of relatives,13,28,30 an observation which has been generalized
to multipoint analysis when complex recombination frac-
tions are admitted, as described above.

The extended admixture test is described in Table 4 leads to
an exact computation of the complete multi-locus pseudo-
marker likelihood. The approximations which were required
in ‘model-based’ likelihood analysis are not necessary in the
pseudomarker analysis, as the latter deterministically assigns
genotypes to all disease loci in all individuals. The implicit
inference is that all disease loci have the same fully
informative genotype for all individuals, though the imagi-

nary components, εi, of the complex recombination frac-
tion17 will be estimated independently for each of the
putative disease loci. In this sense, a full multilocus ‘model-
free’ analysis with pseudomarkers would be equivalent to the
extended admixture test with pseudomarkers.9

Discussion
In this paper, a simple parameterization of the pedigree
likelihood, P(GM,Ph) in the presence of multiple disease-
predisposing loci is proposed, by extension of the conven-
tional A-test of linkage homogeneity.12 Through this general-
ization, we can perform approximate oligogenic
‘model-based’ analysis, and exact oligogenic ‘model-free’
analysis with pseudomarkers. It has earlier been demon-
strated that power is not substantially increased for linkage
and/or LD detection in oligogenic disease through the use of
multi-locus model linkage analyses,31 though sometimes it
can help to delineate between marginal true and false
positives, and improve parameter estimation.10 If there is
strong epistasis, ascertaining pedigrees with multiple affected
individuals would increase the chance that multiple loci have
alleles segregating to the affected individuals in those
pedigrees. If two loci are both segregating in a given family,
linkage of marker loci to either one individually would be
detected with reasonably high probability, while allowance
for epistasis would not increase the power substantially,
especially when a preponderance of affected individuals are
ascertained in the genotyped dataset. On the other hand, in
the presence of strict admixture, where only one disease locus
can have risk alleles segregating in any given pedigree – a very
extreme deviation from the hypothesis of independent
segregation of the disease loci across pedigrees – substantial
power can be gained from joint analysis of multiple loci, as
seen in monogenic diseases like retinitis pigmentosa.3,15 Full
two-locus model joint linkage and LD analysis can lead to
recovery of appropriate recombination fraction estimates,
but the power to detect linkage is not, in general, increased
substantially for epistatic models, especially if one tries all
possible pairs of loci sequentially, as this leads to an
explosion of the type I error rate due to multiple testing.
Stratification on a known locus, on the other hand, can lead
to substantial improvements in power to detect and estimate
linkage and/or LD.32,33

Given the substantial cost of a full two-locus linkage
analysis in terms of computational intensity and number of
analyses required, a simple approximation which is computa-
tionally trivial can be computed as a weighted sum of the
products of single-locus likelihoods, which can be calculated
using the LINKAGE programs,34 for example. Software,
MULTILOC, for implementation of this statistical analysis
model is available from the author (jdt3@columbia.edu) for
analysis of as many as four disease loci (each against markers
on unlinked chromosomal regions) jointly, using a slightly
modified version of the input data structures expected by the
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HOMOG programs of Ott.15 This software will compute all
the relevant likelihood ratios for the traditional lod scores
under homogeneity, the traditional admixture tests,12 as well
as the extended admixture tests proposed in this manuscript,
and runs under VMS (with translation available for Digital
Unix upon request), and is written in DEC Pascal.

Acknowledgements
Support from the Burroughs-Wellcome Foundation and the Columbia
Genome Center is gratefully acknowledged. The models proposed in
this paper were developed and implemented in collaboration with Drs
Satu Kuokkanen, Pentti Tienari, and Leena Peltonen at the
Kansanterveyslaitos in Helsinki, and their constructive comments and
suggestion for the development of this type of multi-locus analysis
method is acknowledged gratefully. Thanks also to Dr Harald HH
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