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Systematic analysis of X-inactivation in 19 XLMR
families: extremely skewed profiles in carriers in
three families
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Annick Toutain1, Chantal Gendrot2, Nathalie Ronce1 and Claude Moraine1
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It has been demonstrated in several X-linked disorders, both with and without mental retardation, that the
X-inactivation process plays a significant role in the expression of X-linked diseases in females. Moreover,
in some disorders extremely skewed inactivation of the X chromosome is constant in carriers, and this is
thought to result from a proliferation or a survival advantage for cells expressing the normal allele at this
locus over cells expressing the mutated allele. X-linked mental retardation (XLMR) is heterogeneous, and
cloning and characterization of the mutated genes are in progress. XLMR can be expressed in carrier
females but often with milder manifestations. We report the systematic study of the X-inactivation profile
of obligate carriers and other females in 19 multiplex XLMR pedigrees, using leucocyte-extracted DNA.
Extremely skewed profiles were observed in carriers in three of 19 families. European Journal of Human
Genetics (2000) 8, 253–258.
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Introduction
XLMR disorders include specific conditions (MRXS), which
are characterised by consistent neuromuscular, metabolic or
physical abnormalities, and non-specific conditions (MRX)
in which mental retardation (MR) is the only trait.1 XLMR
accounts for the excess of males in mentally deficient
individuals2 but some carrier females are also affected in
MRX and MRXS families.1,3 There is strong evidence that the
penetrance of mental retardation in carrier females may be
related to the randomness or skewing of X-inactivation in
critical tissues4 but systematic evaluation of X-inactivation
profiles has not so far been reported in XLMR families.

X-inactivation profiles have been evaluated in several
X-linked disorders with or without mental retardation in
order to understand the female phenotypes (reviewed by
Belmont5). We report the systematic study of the
X-inactivation profile of obligate carriers and other females

in 19 multiplex XLMR pedigrees. This study could explain
the phenotypes in females and provide information about
the mutated gene expression and normal gene function
compared with other X-linked conditions.

Materials and methods
Clinical and linkage analysis and X-chromosome inactiva-
tion profile study were performed on blood leukocyte-
extracted DNA in 143 females from 19 large XLMR multiplex
families (at least two affected males born of two female-
related siblings). All females in each family, whether obligate
carriers (50 females) or of unknown status, were investigated
for X-inactivation when DNA was available. Lymphoblastoid
cell line-extracted DNA was not used for the X-inactivation
PCR assays because the cultured cell population may not
reflect the in vivo cell population. X-chromosome inactiva-
tion analysis was performed using two PCR assays: HpaII
digestion and either androgen-receptor (AR) gene poly-
morphic trinucleotide6 of FMR 1 variable CGG repeat.7 The
density of the bands was quantitated visually and by image
analysis (software package Bioprofil, Vilber Lourmat system:
Vilber Lourmat, Marne-La-Vallée, France). In some cases,
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allelic fragments differed by one repeat and the additional
bands that resulted from DNA strand slippage during amplifi-
cation made it impossible to analyse the relative intensity
(NA) of each fragment. In others the microsatellite was not
informative (NI). After systematic exclusion of FRAXA,
FRAXE and ATRX syndromes linkage analysis was performed
as previously reported.8,9

Results
Clinical and linkage information on each of the 19 families is
schematically set out in Table 1. Linkage to the other X
chromosome regions was excluded. Three MRX families of
the 19 XLMR families showed extremely skewed inactivation
profiles (85% : 15%–100% : 0%) in obligate carriers, a pattern
that was found only in three of 32 female controls analysable
for the AR assay, and the maternally-inherited X chromo-
some was always the inactive one. The three pedigrees are
shown in Figures 1, 2 and 3. Clinical and neuropsychological
data will be reported elsewhere. Mild to moderate mental

retardation was not associated with any biochemical, mor-
phological or neurological abnormalities. A single female was
retarded in one family (III2 in Figure 1). Clinical and linkage
data are summarized in Table 1 and comparison with haplo-
types in the localisation area can be seen with pedigrees in
Figures 1, 2 and 3.

The X-inactivation profiles in the remaining 16/19 XLMR
families were random or moderately skewed. Inactivation
studies of two of the 16 families have previously been
reported, along with the clinical and linkage findings.8,9

Discussion
As explained by Martinez et al,14 the probability of extremely
skewed X-inactivation occurring by chance in four, five or six
females in the same family for the chromosome associated
with the disease is very weak. X-autosome translocation and
large deletions were excluded by karyotype for the three
families. Two main explanations for extremely skewed
X-inactivation therefore remain to be discussed. First, skewed

Figure 1 Family pedigree and haplotypes for the polymorphic markers corresponding to the linkage region. Black symbols denote
affected subjects. Standard nomenclature is used for all symbols. Bold type: AR/HpaII analysis; outline type: FMRI/HpaII analysis; NI:
not informative; NA: not analysable (allelic fragments differing by only one repeat). Alleles are numbered arbitrarily in each family.
Numbers are followed by the proportions of density in each allele. The localisation area between the flanking recombinant markers is
showed by a line. Genetic distances (GDB 1998) are behind the markers.
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X-inactivation may be a familial trait reflecting inheritance of
a genetic factor that controls the randomness or non-
randomness of X-inactivation. Alternatively, skewed inacti-
vation may reflect the segregation of a defect influencing cell
survival or proliferation (the effect may be limited to
leucocyte cells). The precise cosegregation of the skewed
X-inactivation profile in leukocytes and the MRX carrier trait
in the three families reported here makes the second
explanation more likely. The suspected defect that gives a
proliferative or survival advantage to cells might be the
disease gene itself or, less likely, a contiguous gene that might
have been removed by a submicroscopic deletion.

A random pattern of X-chromosome inactivation was
observed for the oldest carrier female in one of our three
families reported above (I1 in Figure 2, 66 years old). Conflict-
ing results have been reported about the stability of
X-inactivation in females > 60 years old. Further studies
should clarify this. Identification of carriers among potential
female carriers in X-linked disorders is not always possible,
even when the mutated gene has been mapped by linkage
analysis, because of the possible occurrence of recombina-
tions in the localisation area itself (eg recombination in
DXS692 for female III8 in Figure 1 and recombination in
MAOB for II6 in Figure 2). The X-inactivation profile can be
taken into account in evaluating the carrier risk for these
females, as in ATRX syndrome.15 Moreover, taking into
account the linkage data from females with known status,
with a calculated probability from their X-inactivation
profile, may reduce the localisation area to the region that
they share with affected males and carrier females in the
family. For the family in Figure 1, the localisation area would
be DXS990–DXS692 (Xq21.33–Xq26.1) instead of DXS990–
DXS1227 (Xq21.33–Xq27.1). For the family in Figure 2 it
would be MAOB–DXS1003 (Xp11.3–Xp11.4) instead of
DXS8025–DXS1003 (Xp11.3–Xp11.4).

The skewed X-inactivation in leucocyte DNA provided
evidence that the gene co-segregating with mental retarda-
tion in these three families (the MR gene itself or the
contiguous gene) is expressed in leukocytes as a cell
population.

In the 16/19 XMLR families with random or moderately
skewed profiles, with possible or constant expressing carriers,
the X-inactivation profiles in leukocytes were not correlated
with phenotypes, as observed by Des Portes et al3 in MRX48.
Moreover, despite extremely skewed inactivation in leuko-
cyte cells, like the other obligate carriers from family MRX63,
III2 was affected. The X-inactivation profile may be different
in some critical tissue and this may explain the unexpected
phenotypes. Another explanation for the phenotype differ-
ences in females that are not correlated with the
X-inactivation profile is the genetic background and the
influence of the other genes in each individual. Variable
severity is often observed in males in XLMR families.

Lastly, why a disorder that is not very severe in males and
limited to mental retardation, as observed in our three

families with extremely skewed X-inactivation in females, is
responsible for a selection mechanism in female cells remains
to be understood.
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