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Charcot-Marie-Tooth disease is an heterogeneous group of inherited peripheral motor and
sensory neuropathies with several modes of inheritance: autosomal dominant, X-linked and
autosomal recessive. By homozygosity mapping, we have identified, in the 5¢23-q33 region, a
third locus responsible for an autosomal recessive form of demyelinating CMT. Haplotype
reconstruction and determination of the minimal region of homozygosity restricted the
candidate region to a 4 cM interval. A physical map of the candidate region was established by
screening YACs for microsatellites used for genetic analysis. Combined genetic, cytogenetic
and physical mapping restricted the locus to a less than 2 Mb interval on chromosome 5q32.
Seventeen consanguineous families with demyelinating ARCMT of various origins were
screened for linkage to 5q31-q33. Three of these seventeen families are probably linked to this
locus, indicating that the 5q locus accounts for about 20% of demyelinating ARCMT. Several
candidate genes in the region were excluded by their position on the contig and/or by sequence
analysis. The most obvious candidate gene, EGR1, expressed specifically in Schwann cells,
mapped outside of the candidate region and no base changes were detected in two families by
sequencing of the entire coding sequence.
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Introduction

Charcot-Marie-Tooth disease is an heterogeneous
group of inherited peripheral motor and sensory
neuropathies, characterised by chronic distal weakness
with progressive muscular atrophy and sensory loss in
the distal extremities. Autosomal dominant, X-linked
and autosomal recessive modes of inheritance have
been described. Autosomal recessive forms of CMT
disease (ARCMT) are classified on the basis of
electrophysiological and pathological features'” but
recent results of genetic mapping add a new degree of
complexity. So far, four different loci have already been
reported: CMT4A in 8q13-g21.1,"> CMT4B in 11q23,"
a locus in 5q23-q33° and in 8q24 hereditary motor and
sensory neuropathy-Lom (HMSNL)® but none of the
corresponding genes have been identified. In a previous
study, we localised the 5q23—q33 locus to a 4 cM interval
by homozygosity mapping in two consanguineous
Algerian families.” In order to identify the correspond-
ing gene, we have now constructed a detailed physical
map of this region. Combined genetic, cytogenetic and
physical mapping refined the position of this locus to an
approximate 2 Mb interval on 5q32. We also performed
linkage analysis of 17 additional consanguineous fami-
lies of various origin with demyelinating ARCMT.
Three of these families are probably linked to the
5q23-q33 region, indicating that this locus represents
about 15 to 20% of the demyelinating ARCMT. We
have excluded several candidate genes in the region by
their position on the YAC contig and/or by sequence
analysis, including EGRI and CD.X1 which, because of
their functions, appeared to be excellent candidates.

Materials and Methods

Physical Mapping

Total DNA was extracted by standard protocols from
18 YACs previously mapped to chromosome 5q31-q33’ and
from 42 additional YACs, selected according to data from the
CEPH library.® We first screened YACs with seven sequence-
tagged sites (STS) derived from Li et al’ D5S70, D5S545,
D5S546, D5S547, D5S68, D5S549 and D5S686. In a second
step, the YACs were analysed, by PCR, with 17 microsatellite
markers (D5S622, D5S642, D5S666, D5S393, DS5S65S,
D5S643, D5S436, D5S402, D5S638, D5S413, D5S434,
D5S636, D5S673, D5S410, D5S670, D5S412 and D5S422)
from the Généthon map, which were previously used for
genetic analysis,”® and with two additional STS (D551702 and
D5S1481) from the Whitehead Institute for Biomedical
Research database.

FISH Analysis of YACs
In order to map the YAC contig to the 5q region and confirm
the absence of chimerism, 5 YACs (812ES8, 959ES, 841D10,

951A10 and 939F12) were analysed by simultaneous fluores-
cent in situ hybridisation (FISH) and R-banding by primed in
situ labelling (PRINS) according to Coullin et al (personal
communication, 1998). Slides were prepared using standard
cytogenetic methods. PRINS was performed as previously
described,'® except that the Alu S sequence was used as the
primer and digoxigenin-11-dUTP as the labelled nucleotide.
After PRINS labelling, FISH was performed as described
elsewhere,'" with PCR amplifid/biotin labelled human YAC
inserts as probes. The Alu S and Alu R primer sequences used
to amplify human YAC inserts are 5' GCCACTGCACTC-
CAGCCTGGG 3' and 5' GCCTCCAAAGTGCTGGGAT-
TACAG 3', respectively.'> The R-banding pattern provided by
Alu-PRINS and the FISH signals were revealed, respectively,
by anti-digoxigenin-rhodamine and avidin—-FITC, observed
by epifluorescence microscopy (Zeiss Axiophot, Thornwood,
NY, USA).

Family Screening

Consanguineous families from Europe and North Africa with
ARCMT were collected thanks to a collaborative network of
neurologists. The inclusion criteria were: (i) autosomal
recessive mode of inheritance, ie at least one affected in a
single generation born from related parents who were
clinically and electrophysiologically non affected, and (ii)
reduced motor nerve conduction velocity in the medium
nerve (MNCV < 48m/s) in patients and/or demyelinating
neuropathy on nerve biopsy. There were 17 families: six from
France (FAR-025, KET-037, CHI-104, MOU-171, CER-295,
GOU-1021), four from Saudi Arabia (ALS-332, SAI-336,
AIT-337 and BAS-551), three from Morocco (GHA-018,
AIT-087 and MAR-576), two from Tunisia (TER-162,
RE-531) and two from Portugal (EST-221 and MAN-265).
Appropriate informed consents were obtained from available
family members (parents, affected and non-affected children)
who were genotyped with two co-localised fluorescent mark-
ers from the 5q region (D5S643 and D5S436) on an ABI 377
sequencer. Data were analysed by the Genescan® (v3.1) and
Genotype® (v1.1.1) softwares (PE Applied Biosystems,
Foster City, CA, USA). HOMOG analyses'® was based on the
results of bipoint lod scores, considering haplotypes for
markers D58643/D5S436. The frequencies of each haplotype,
ranging from 0.02 to 0.05, were determined by the observa-
tion of the transmitted alleles at each loci in the 17 families.
Families with a high posterior probability in favour of linkage
were genotyped for 10additional microsatellite markers
spanning the ARCMT locus in 5q31-q33: cen-D5S393-
1.2 cM-D5666-1.7 cM-D5S207-0.1 cM-D5S658—4.4 cM—
D5S402-0 cM-116YC5-0 cM-D5S210-0 cM-D5S638-3 cM—
D5S413-2.2cM-D5S434. Haplotypes were reconstructed
manually and linkage analysis was performed with the
LINKAGE and FASTLINK software packages.'*"

Gene Mapping

According to the cDNA sequence of the 15 candidate genes,
primers were designed to amplify specific fragments from
genomic DNA (see Table3). Moreover, intragenic poly-
morphic GT repeats in the FBN2'® and FGFA genes'’ were
tested in patients from families BOU-001 and ABD-210
previously referred to as ALG-BOU and ALG-ABD.® For
each experiment, human genomic DNA and ultra-pure water
served as positive and negative controls, respectively.



Sequencing of EGR1 and CDX1 Genes

Each exon of the EGRI and CDXI gene was amplified by
PCR in five individuals of family BOU-001 (the two parents,
one unaffected child and two patients) and in three members
of family ABD-210 (the mother and two patients), using
primers designed from the cDNA sequence and according to
the determination of the exon/intron structure.'®'® The PCR
products were sequenced with Bidgye™ dRhodamine Termi-
nators® (PE Applied Biosystems) on an ABI 377 sequencer
and sequence chromatograms were analysed using Autoas-
sembler® software (version 1.4.0, PE Applied Biosystems).

Results

Physical and Cytogenetic Mapping

Homozygosity mapping in family BOU-001 which
allowed the gene in 5923-q33 to be localised, led us to
identify the 4cM homozygosity region encompassing
the microsatellite markers D5S643 and D5S436 as the
candidate interval. We first localised D5S643 and
D58436 on a previously constituted YACs contig of the
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5q31-q33 region established with non polymorphic
STSs.” Then, we verified the position of STSs in the
interval between D5S70 and D5S686. Most results were
confirmed, but discrepancies were observed for D5S545
and D5S686. They were previously assigned to YACs
124F11 and 939F12, respectively, but we did not
observe amplification products with both of them. In
order physically to map the candidate region, the
18 YACs from this contig and 42additional YAGCs,
previously assigned by CEPH in 5q23-g33,” were tested
with the 17 microsatellites markers used for the pre-
vious genetic mapping.’ Twenty-three YACs belonging
to the CEPH library (9 from Li et al’ and 14 from our
screening) were selected according to (i) their content
of appropriate markers, and (ii) the absence of internal
deletions. By combining the results of STSs and
polymorphic markers, we constituted a contig ranging
from D5S207 to D5S434 with only one gap situated
between markers D5S545 and D5S658 (Figure 1). Two
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Figure1 YAC contig from the 5q31-q33 region. Microsatellite markers are in bold. The markers included in the homozygosity region
are boxed and their location on the corresponding YACs are shaded. The YACs from Li et al” are in italics. Asterisks indicate the YACs
analysed by FISH and absence of amplification is indicated by//. Both genes caudal type homeobox1 (CDX1) and adrenergic [

receptor (ADRB2) were mapped on this contig
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STSs from the Whitehead Institute (D5S1481 and
D5S1702) did not allow the gap to be resolved but
showed the absence of D5S1702 on YAC939F12,
suggesting an internal deletion. In addition, position of
marker D5S402, previously located between D5S643
and D5S436 and D5S638 by haplotype reconstruction,’
was modified because it turned out to be centromeric to
D5S643 but telomeric to D5S658 on the YAC contig.
Furthermore, we were able to order the microsatellites
D5S643 and D5S436 which were co-localised on the
Généthon map (D5S436 is telomeric to D5S643) and
three new microsatellite markers (D5S207, D5S210 and
116YC5) were precisely mapped in the contig. A new
order of microsatellites in 5q31-q33 can be proposed:
cen—-D58393-D5S207-D5S658-D5S402—

116 YC5-D5S643-D5S436-D5S210-D5S638—tel.

Three new markers D5S207, D5S210 and 116YCS,
were genotyped in families BOU-001 and ABD-210.
116YC5 and D5S210 represented, respectively, the
centromeric and telomeric boundaries of the homo-
zygosity region in family BOU-001 (see Figure 3). This
region was completely included in YAC939F12
(1.6 Mb) from the contig of Li e al.” In the new contig,
12 overlapping YACs227A12 (0.45Mb), 718C3
(0.29MDb), 445F6 (0.35Mb), 919C4 (1.5Mb), 949E3
(1.58 Mb), 812E8 (1.44Mb), 841D10 (1.43Mb), 959ES
(1.6 Mb), 929D3 (1.72Mb), 780B9 (0.82Mb), 951A10
(0.59 Mb) and 930G 10 (1.52 Mb) covered the candidate
interval which probably corresponds to a physical
distance of less than 2 Mb.

FISH analysis combined with Alu-PRINS banding
demonstrated the absence of chimerism for four of the
five analysed YACs (812E8, 959E5, 841D10 and
951A10) and refined their location in the 5q32 band.
YAC 939F12 hybridised specifically with chromosome 3
and 5, and is therefore chimeric.

Linkage Analysis

Seventeen consanguineous families (Figure2) were
studied for their linkage to the 5q31-q33 region. They
were first tested with the two closest markers flanking
the 5q locus: D5S643 and D5S436.° Two-point lod
scores for the haplotype D5S643/D5S436 at a recombi-
nation fraction (@) of 0.00 were positive (range
0.79-1.77) in families GHA-018 (Morocco), TER-162
(Tunisia) and GOU-1021 (France). They were null or
negative for the 14 other families (Table1). In family
GHA-018, a lod score above 1.7 highly supported a
linkage.”” The lod scores of families TER-162 and
GOU-1021 were only slightly positive due to their small
size. The odds, calculated with the HOMOG program,

in favour of linkage with heterogeneity (H2) as
opposed to no linkage (HO) and to linkage and
homogeneity (H1) were 9.53 X 10%1 and 2.13 X 10*1,
respectively. Haplotypes were reconstructed for
12 microsatellite markers spanning 15.6 cM on chromo-
some S in the three families presenting a high posterior
probability (0.67-0.95) of linkage to the ARCMT locus
on chromosome 5q31-q33 using the HOMOG program
(Figure 3). As in families BOU-001 and ABD-210 with
previously demonstrated linkage,” all patients were
homozygous for both microsatellite markers D5S643
and D5S436 but the region of homozygosity extended
into the flanking regions in the three new families. In
family GOU-1021, where the parents are first cousins,
the homozygosity region in patient 001 was smaller
than expected, but probably larger than 4.4cM since
recombination values from the Généthon map were
evaluated from only a limited number of meiosis. A
recombination event was observed in family GHA-018
with marker D5S393 in patient 011 which represents
the centromeric boundary of the candidate region in
this kindred. This recombination event permitted us to
place D5S666 telomeric to D5S393. No particular
alleles segregated with ARCMT in the five families
(data not shown).

Clinical Analyses

Clinical data for these families are summarised in
Table2. Age at onset was between 2 and 10years in
both reference families, BOU-001 and ABD-210.° A
similar age at onset was observed for family GHA-018,
but for families TER-162 and GOU-1021 onset was in
the second decade of life. Foot and spine deformities,
which were also reported in families BOU-001 and
ABD-210, were observed in three or four patients in
three new families where the stage of disability ranged
from 1 to 4.*' The values for MNCV were homoge-
neous, ranging from 20 to 30m/s in 14/16 patients
including those from two of the three new families. The
sural nerve biopsy in patient TER-162-004 showed
severe loss of axons and of myelinated fibres with signs
of Schwann cell proliferation in surviving nerve fibres.
Moreover, thickening of the basal lamina from
Schwann cells were observed but no onion bulb was
observed, as described by Kessali et al.*

Mapping of Genes in the 5q31-q33 Contig

Approximately 40genes have been identified in the
5q31-g33 region according to the OMIM and GDB
databases, but only EGRI is specifically expressed in
Schwann cells or in the peripheral nervous system. The
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Figure2 Simplified pedigrees of 17 consanguineous families with demyelinating ARCMT tested for linkage to the 5q31-q33 region.
Black symbols represent affected individuals. All individuals were available for study except those indicated by asterisks. The parents
are first cousins in all families, except for GHA-018 where they are second cousins. Families with high posterior probability of linkage
are underlined. Pedigrees of both Algerian families (BOU-001 and ABD-210), in which linkage was identified with the 5q region, were

reported in LeGuern et al’

EGRI gene could not be amplified, however, by PCR
on YACs from the contig, whilst a positive amplification
was obtained with total genomic DNA. This supports
the proposition that EGRI is not in the candidate
region. Fourteen other candidate genes, selected
depending on their function and/or their expression
pattern (Table 3), were also studied by PCR. Only two
were found on the contig. First, ADRB?2 (adrenergic 2
receptor) was assigned to YACs746E11, 335D9 and
180B3 and thus was located at the telomeric end of the
contig outside of the candidate interval, probably
between markers D5S686 and D5S434. Second, CD X1
(caudal type homeobox 1) was located on YACs 445Fb6,
939F12, 812ES8, 841D10, 780B9, 951A10 and 930G10,
probably between D5S1481 and D5S210 at the telo-
meric side of the smallest common homozygosity
region. The other genes studied (CANX, CSFIR,
CTNNAI, DBNI, FBN2, FGFA, GM2A, GRL,
ITGA2, LMNBI, PDGFRB and SPARC) were not

considered further as candidates because of the
absence of specific PCR product with the DNA from
any of the 23 YACs of the contig. Furthermore, patients
from families BOU-001 and ABD-210 were hetero-
zygous for polymorphisms described in FBN2 and
FGFA genes,'®"” confirming that these genes are not
likely to be responsible for this form of CMT.

Sequencing Candidate Genes

To confirm exclusion of the EGRI and CD X1 genes, we
searched for mutations in their coding sequences. The
EGRI gene could not be amplified by RT-PCR using
mRNA extracted from lymphoblastoid cell lines. We
therefore determined its exon/intron structure by anal-
ogy with the structure of the rat egrl gene.”> A single
721bp intron at nucleotide 577 (reference human
cDNA sequence; accession number X52541) was found
(Figure4). The two coding exons and the intron
boundaries were sequenced. No base changes were
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Table 1 Two-point lod scores for the haplotype D5S643/D5S436 in 19 consanguineous families with an autosomal recessive form

of demyelinating CMT

Conditional
probability

Family 0 0.00 0.01 0.05 0.10 0.20 0.30 0.40 of linkage
BOU-001 5.46 5.37 5.00 4.52 3.49 2.37 1.15 1.00
ABD-210 4.28 4.19 3.79 3.57 2.34 1.16 0.53 0.99
GHA-018 1.77 1.72 1.55 1.34 0.91 0.51 0.19 0.95
FAR-025 -2.60 -1.26 -0.61 -0.35 -0.14 -0.05 -0.01 0.08
KET-037 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.25°
AIT-087 —oo -4.88 -2.29 -1.26 -0.44 -0.16 -0.02 0.00
CHI-104 -1.50 -1.02 -0.51 -0.29 -0.11 -0.04 -0.01 0.01
TER-162 0.79 0.77 0.68 0.58 0.38 0.21 0.08 0.67
MOU-171 -2.69 -1.13 -0.49 -0.26 -0.09 -0.03 -0.01 0.07
EST-221 —oo -1.71 -0.91 -0.55 -0.23 -0.09 -0.02 0.00
MAN-265 -2.69 -1.13 -0.49 -0.26 -0.09 -0.03 -0.01 0.00
CER-295 —o0 -5.32 -2.66 -1.62 -0.71 -0.28 -0.07 0.00
ALS-332 —o0 -3.93 -1.94 -1.15 -0.48 -0.18 -0.04 0.00
SAI-336 -2.39 -1.14 -0.51 -0.27 -0.11 -0.05 -0.03 0.00
AIT-337 -3.04 -1.75 -0.98 -0.62 -0.28 -0.12 -0.03 0.00
RE-531 —oo -7.00 -4.20 -3.20 -1.05 -0.36 -0.09 0.00
BAS-551 —o0 -0.98 0.76 1.27 1.34 0.96 0.37 0.00
MAK-576 —oo -4.15 -2.14 -1.31 -0.58 -0.24 -0.07 0.00
GOU-1021 1.00 0.97 0.87 0.75 0.50 0.29 0.12 0.76

Lod scores were calculated with a haplotype frequencies ranging from 0.02 to 0.05, depending on the frequency of the transmitted
alleles at each loci. Conditional probability was calculated using the HOMOG program.” "Family SAL-KET-037 was uninformative

for both markers D5S643 and D5S436.

observed in patients compared with controls. The three
exons and corresponding intron boundaries of the
CDXI1 gene were sequenced in eight individuals from
families BOU-001 and ABD-210, but no mutations
were identified compared to the reference sequence."

Discussion

Homozygosity mapping in two large Algerian families
with consanguinity assigned a locus responsible for an
autosomal recessive demyelinating form of CMT to
5q23-g33.° In order to identify genes that might be
responsible for this ARCMT, we constructed a physical
map of the candidate region focused on the smallest
homozygosity region observed in family BOU-001.
Nine YACs from a previously established contig of the
5q31-q33 region’ and 14new YACs from the CEPH
permitted each interval in the candidate region to be
covered by three to eight YACs, some of which are non-

chimeric. Localisation of 10additional microsatellite
markers in this contig permitted ordering of some of
the microsatellites and definition of the smallest region
of homozygosity to a < 2Mb interval between markers
116YC5 and D5S210, which is the most probable
location of the gene. Combined FISH and Alu-PRINS
banding refined the locus cytogenetically to band
5q32.

Linkage analysis of 17 consanguineous families with
demyelinating CMT identified three new families with
a high posterior probability of linkage to the ARCMT
locus on chromosome 5q. This locus accounts, there-
fore, for a significant proportion (about 20%) of
demyelinating ARCMT families in Europe and North
Africa. A recent study of Dutch families with ARCMT
localised the gene in a 7cM region between D55643
and D5S670.> There are some discrepancies between
their genetic data and the new marker order defined by
the present study. However, the only consanguineous
family from their study is homozygous for a region
between D5S402 and D5S410, a marker localised 7cM
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Figure3 Region of homozygosity and recombination events in patients with probable linkage to chromosome 5q. For families BOU-
001 and ABD-210, only the most informative patient is represented. Patients are identified in Figure2. The homozygosity regions
observed for each patient overlap and include markers D55643 and D55436

telomeric to D5S434. This region overlaps the homo-
zygosity region observed in our families. Haplotyping in
our three families with 12 chromosome 5 markers did
not reduce the homozygosity region detected in family
BOU-001 but confirms the order of microsatellites
determined by physical mapping. No common allele of
any marker segregated with the disease in the five
families. Given their geographical origins (Algeria,
Morocco, Tunisia and France), there is no reason to
suspect a common ancestral mutation. Clinical exam-
ination showed an interfamilial variability of the
phenotype which could be explained by the effect of
different mutations. Kessali et al*® have already noted a
large intrafamilial variability concerning the course of
the disease. Although foot and spine deformities were
observed in 15 of 16 patients, they were not necessarily
associated with a severe stage of disability. This
discrepancy between the rapid worsening of deform-
ities and the relatively slow evolution of the motor
deficit has already been reported by Kessali et al.*
Nerve biopsy in patient TER-162-004, for whom
MNCYV was not recordable because of absent evoked
response, confirmed the demyelinating nature of the
disease. Two differences were observed on nerve
biopsies among patients from families ABD-210 and

TER-162. First, the axonal loss observed in patient
TER-162-004 is more severe than in family ABD-210>°
and second, no onion bulbs were found in TER-
162-004. However, thickenings of basal lamina from
Schwann cells in TER-162-004 are very similar to the
several concentric layers of basal lamina surrounding
myelinated fibres described by Kessali et al.”° The basal
lamina defect, which seems to be very specific for this
form of demyelinating CMT, could constitute a useful
morphological criteria for characterising this disease.
Unfortunately, neuropathological examinations were
missing in two of the new families.

Recently, mutations in zinc finger domains of the
EGR2 gene (also known as Krox-20) were associated
with congenital hypomyelination (CHN) and CMT1.**
EGRI, like EGR2, is an immediate early serum
response gene. Both encode closely related zinc finger
phosphoproteins that act as transcription factors.”
According to their expression pattern in mouse, Krox-
20 (egr2) and Krox-24 (egrl) would play antagonistic
roles during the development of the Schwann cell
lineage. Krox-24 appears to repress the myelination or
to induce the non-myelinating state.”> Although EGRI
represented an evident candidate gene because of its
location in 5q21-q33, it maps outside of the candidate
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Table 3 PCR primers and conditions for mapping of the candidates genes

Primer pairs Amplification Annealing

Genes™ product size (bp)  temperature

ADRB2* adrenergic B2 receptor GTACTGTGCCTAGCGATAAC 345 60°C
TATAGCAGACTCAGGTCCTC

CANX?” calnexin ATGGAAGGGAAGTGGTTG 167 50°C
GGAGATGAAGGAGGAGCA

CDXI* caudal type homeobox 1 GTAAGACTCGGACCAAGG 131 60°C
CCGGATTGTGATGTAACGGCT

CSFIR® colony stimulating factor-1 TCATCACTTCCAGAATGTGC 117 55°C

receptor TGTGTCCAGCCTTAGTGTGCA

CTNNAT* catenin alpha-1 GTTGAGAGACTGTTGGAG 66 57°C
CCCTTTACTATTGGTGTT

DBNI* drebrin E CTGAGGGAGAAAGGG 127 50°C
TTACGAGGAGGTGAT

EGRI®> early growth response 1 GCACGCTTCTCAGTGTTCCC 260 58°C
CGTTGCTCAGCAGCATCATC

FBN2* fibrillin 2 AAGGTGTTCTTTGCATGTTCACC 110-115 55°C
GTAATGTGTTCTATCTAGTTCAACG

FGFA" fibroblast growth factor A CTCAGAGCTGCAGTAGCCT 245-259 55°C
GTAGCATTACATTTGCACTTGG

GM2A* GM2 activator GACCTCTGCCGCCTC 323 50°C
CACCTCCTTCTCCAA

GRL”» glucocorticoid receptor TCACGAGGGCTTGTAGTAGGT 700 60°C
AGTCACGGCACCCAGCCAAT

ITGA2® integrin alpha 2 CGCTCAGTCAAGGCATTIT 180 60°C
CCATTCGGTTCTCAGGAA

LMNBIY lamin B1 GGGTGGGCAGTCCCA 399 58°C
CCACTCACACACGCA

PDGFRB* platelet derived growth factor TCATGCTTTGGCAGAAGGTA 220 57°C

receptor ATAGCTCGGGCCAGGCTCAG
SPARC? osteonectin GATCTAAATCCACTCCTTCC 270 58°C

CAGATCCGTGTCCACCCATG

region and no base changes were detected by analysis
of its whole coding sequence in selected patients,
probably excluding coding region point mutation as
responsible for the disease. Two other genes, ADRB2
and CDX1, located in the contig were also excluded.
ADRB?2 was mapped in its telomeric end, outside the
homozygosity region. In contrast, CDXI was con-
sidered as a candidate gene because of its location on
YACs overlapping the homozygosity region. This loca-
tion is in contradiction with a previous study placing it
telomeric to ADRB2.*° The disruption of the murine
homeobox gene CD X1 leads to axial skeletal deform-
ities with anterior homeotic transformation.”” As most
patients with this form of CMT present severe anterior
spine deformities, this gene was considered as a good
candidate both by its position and its function. How-

ever, direct sequencing of CDXI coding sequence in
CMT patients failed to identify any mutation. The
availability of the YAC contig and the refinement of the
homozygosity region to a less than 2 Mb interval should
greatly help to identify and test new candidate genes or
ESTs in the region. Identification of the gene responsi-
ble for this demyelinating neuropathy would help to
understand the pathogenesis of this and other autoso-
mal recessive myelinopathies.
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