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Direct estimation of the recombination
frequency between the RB1 gene and two
closely linked microsatellites using sperm
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In this study, single sperm typing has been used for high-resolution recombination analysis
between the retinoblastoma gene and two closely linked extragenic microsatellites (D13S284
and D13S1307). The analysis of 1198 single sperm from three donors allowed the
determination of recombination fractions between RB1.20 and D13S284 and RB1.20 and
D13S1307 of 0.022 and 0.033, respectively. These results show that RB1 gene and the two
microsatellites are closely linked, which validates their potential use in indirect genetic
diagnosis of retinoblastoma.
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Introduction
Retinoblastoma is a rare intraocular tumour that arises
in early childhood, initiated by the loss of function of
both alleles of the retinoblastoma gene (RB1).1 In
families affected with hereditary retinoblastoma, when
the causative mutation has not been identified, it is
possible to follow the segregation of the mutant allele
by studying polymorphisms located within the RB1
gene.2 However, 5–10% of families show a lack of

heterozygosity for all of the markers described. An
alternative is to study extragenic markers as close as
possible to the RB1 gene, which minimizes the chance
of a recombination event occurring.

In humans, the resolution of the genetic distance
between closely linked markers is low due to the fact
that these distances are estimated from very rare events
in a limited sample size. To overcome this problem, the
genetic study of isolated single sperm constitutes an
original alternative to indirect procedures based on
linkage analysis.3

Several extragenic microsatellites located on chro-
mosome 13 around the RB1 gene were described in the
most recent Généthon genetic map.4 Among the
polymorphisms for which the donors in our study were

Correspondence: A Girardet, Laboratoire de Biochimie
Génétique, Institut de Biologie, 4 Bd Henri IV, 34060
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heterozygous, D13S284 and D13S1307 presented a high
polymorphism information content (0.87 and 0.68,
respectively) and were easily amplified and analysed.
The recombination frequencies between these loci and
the RB1 gene have never been fully established,
because of the lack of recombinant chromosomes in the
offspring of the CEPH (Centre d’Etudes du Poly-
morphisme Humain) pedigrees studied.

The aim of the present study was to estimate by
sperm typing technique the male recombination fre-
quency between a short tandem repeat of the retino-
blastoma gene (RB1.20) and each of the microsatellite
markers D13S284 and D13S1307, in order to validate
their use in indirect genetic diagnosis of predisposition
to retinoblastoma in affected families. The ability to
type microsatellites might have a major implication for
future preimplantation genetic disease diagnosis, due to
the high level of allelic heterogeneity of most disease-
causing mutations.

Materials and Methods
Single Sperm Isolation and Preparation
Sperm samples were collected from two donors heterozygous
for both RB1.20 and D13S284 microsatellites (donors 1 and
2) and one donor heterozygous for RB1.20 and D13S1307
(donor 3).

Single sperm were sorted by fluorescence-activated cell
sorting, lysed and neutralized as previously described.5

PCR Conditions
In the first-round PCR, the two polymorphisms
(RB1.20/D13S284 and RB1.20/D13S1307) were co-amplified
for 35 cycles, in the same microtiter well using a specific pair
of outside primers, each pair flanking one of the micro-
satellites (Table 1).

The two microsatellites were then amplified in separate
second-round reactions using two microliters of first-round
product, for 40 cycles. The forward primers were labelled with

a fluorescent dye (6-FAM) to visualize the PCR products in
an Automated DNA-sequencer model ABI 377 (Applied
Biosystems, Foster City, CA, USA).

Second-round PCR products were loaded onto denaturing
4% polyacrylamide gels and analysed with the Genescan 2.1
software (Applied Biosystems).

Statistical Analysis
Data were analysed using two programs especially designed
for statistical analysis of sperm typing data: TWOLOC5 and
SPERM.6 In addition to the estimation of recombination
fractions (θs) and the standard errors (SEs), the programs
calculate amplification efficiencies (α) and contamination
rates (â) for each allele, and the probability (γ) of n sperm
present in a tube (n = 0, 1, 2).

Results and Discussion
We typed 868 single sperm (416 from donor 1 and 452
from donor 2) for both RB1.20 and D13S284 micro-
satellites and 330 single sperm for RB1.20 and
D13S1307 (donor 3). No amplification was obtained for
the negative controls (wells without cells), which is
consistent with absence of contamination. The distribu-
tion of observed RB1.20, D13S284 and D13S1307
alleles for the 1198 amplified spermatozoa is given in
Table 2. The maximum likelihood estimates and their
asymptotic standard errors are given in Table 3.

The estimated recombination fractions for the
RB1.20–D13S284 interval using TWOLOC program
were not significantly different between donors 1 and 2
(0.0256 ± 0.0100 and 0.0194 ± 0.0083, respectively).
Combined data from the two donors (868 sperm cells)
using the SPERM program gave an estimated recombi-
nation rate of 0.0222 with a standard error of 0.0064.
For donor 3, the recombination fraction between
RB1.20 and D13S1307 was 0.0326 with a standard error
of 0.0124. However, more individuals have to be
studied further to determine if an interindividual

Table 1 Primers and conditions for the two rounds of amplification

Locus Primers Sequence (59 to 39)
PCR 1 PCR 2

Concentration Annealing Concentration Annealing
(µM) tºC (µM) tºC

RB1.20 AF2 ACT CAT GAG AGA CAG GCA TTT G 0.5 5 6 – –
AR2 GTA CAC GCC TGT ATC CTA GCT 0.5 5 6 – –
BF2 CTT CAC CTT CTC TCC TCC CTA C – – 0.2 6 4
BR GGG TAA CAG AGT GAG ACT CTA TC – – 0.2 6 4

D13S284 284 Fext GAG TGT CCT CTG TTG CAG AAC 0.8 5 6 – –
284 R AAA AGG CTA ACA TCG AAG GGA G 0.8 5 6 0.4 5 6
284 F CAG GTG GAA ACA GAA TTC ATT CA – – 0.4 5 6

D13S1307 1307 Fext CTG CCA AAA TGG GAG TTA GCA 0.6 5 6 – –
1307 R CTC CTT CAA ACA GAC TCT GAC 0.6 5 6 0.2 6 0
1307 F CAA GGT ATG GGA TCT CAA AGA A – – 0.2 6 0
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variability of the recombination rate exists between
these markers, as has been already reported for other
specific genomic intervals.7 Moreover, several studies
have discussed the possible effect of different parame-
ters on the recombination rate such as sex, age and
environmental factors. Some chromosomes show an
increasing map length with increasing age, whilst others
show the opposite, but it is still not known if recombina-
tion phenomena are restricted to specific intervals or
are genomewide. Sex-specific differences in recombina-
tion are well characterized in many organisms. The
human genetic map shows on average 50% more
recombination events for females than for males4 but
some specific DNA intervals display more recombina-
tion events in males.

These sperm typing data indicate that both D13S284
and D13S1307 polymorphisms are tightly linked to the
retinoblastoma gene with estimated θs which do not
differ significantly which is consistent with the CEPH
data. Thus, as a first approximation, the two markers
may be equally used in linkage analysis. However, we
only measured the male recombination fraction; differ-
ent results may be obtained in females, which cannot be
estimated from the CEPH data as no recombination
occurred in the families analysed.
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Table 2 Typing data from 1198 sperm cells for alleles RB1.20
(locus A), D13S284 (locus B for donors 1 and 2) and
D13S1307 (locus B for donor 3)

Number of sperm

Donor 1 Donor 2 Donor 3
Observed phase phase phase
sperm type (ab/AB) (ab/AB) (aB/Ab)

(– – – –) 43 35 31
(a – – –) 28 23 28
(– A – –) 33 22 17
(aA – –) 0 1 0
(– – b –) 21 21 16
(– – – B) 29 26 11
(– – bB) 0 0 1
(a – b –) 129 141 7
(a – – B) 2 3 130
(aAb –) 1 2 0
(aA–B) 0 0 1
(a–bB) 1 2 2
(–AbB) 0 0 0
(–A–B) 124 166 1
(–Ab–) 5 4 85
(aAbB) 0 6 0
Total 416 452 330
Recombination

frequency 2.56% 1.94% 3.26%
95% confidence

interval 0.6–4.5% 0.3–3.6% 0.8–5.7%

Dashes indicate that the allele was not detected.

Table 3 Maximum likelihood estimates of the parameters θ,
α, â and γ

L Parameter estimate

Donor 1
L1 = –1487.782 αA =0.8629 (0.0281) αa =0.8160 (0.0322)

αB =0.8286 (0.0300) αb =0.7929 (0.0332)
âA =0.0 âa =0.0067 (0.0063)
âB =0.0 âb =0.0060 (0.0061)

θAB = 0.0256 (0.0100)
γ0 =0.0763 (0.0166) γ1 =0.9237 (0.0166)
γ2 =0.0

Donor 2
L2 = –1569.571 αA =0.8737 (0.0253) αa =0.8653 (0.0264)

αB =0.8599 (0.0261) αb =0.8861 (0.0250)
âA =0.0 âa =0.0144 (0.0104)
âB =0.0 âb =0.0071 (0.0087)

θAB = 0.0194 (0.0083)
γ0 =0.0643 (0.0135) γ1 =0.9015 (0.0190)
γ2 =0.0342 (0.0145)

Donor 3
L3 = –1155.345 αA =0.9265 (0.0245) αa =0.8333 (0.0345)

αB =0.8295 (0.0350) αb =0.8273 (0.0330)
âA =0.0 âa =0.0055 (0.0062)
âB =0.0210 (0.0127) âb =0.0

θAb = 0.0326 (0.0124)
γ0 =0.0769 (0.0176) γ1 =0.9231 (0.0176)
γ2 =0.0

Donors 1 + 2
L4 = –1537.68 αA =0.8696 (0.0192) αa =0.8448 (0.0198)

αB =0.8460 (0.0200) αb =0.8450 (0.0199)
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âB =0.0 âb =0.0061 (0.0054)

θAb = 0.0222 (0.0064)
γ0 =0.0711 (0.0106) γ1 =0.9160 (0.0115)
γ2 =0.0

Values in parentheses are standard errors. L, maximum log
likelihood.
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