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We describe recent progress in parallel molecular genetic analyses using DNA
microarrays, gel-based systems, and capillary electrophoresis and utilization
of these approaches in a variety of molecular biology assays. These
applications include use of polymorphic markers for mapping of genes and
disease-associated loci and carrier detection for genetic diseases. Application
of these technologies in molecular diagnostics as well as fluorescent
technologies in DNA analysis using immobilized oligonucleotide arrays on
silicon or glass microchips are discussed. The array-based assays include
sequencing by hybridization, cDNA expression profiling, comparative genome
hybridization and genetic linkage analysis. Developments in non microarray-
based, parallel analyses of mutations and gene expression profiles are
reviewed. The promise of and recent progress in capillary array electro-
phoresis for parallel DNA sequence analysis and genotyping is summarized.
Finally, a framework for decision making in selecting available technology
options for specific molecular genetic analyses is presented.

Keywords: chip DNA; microarray; mRNA level; capillary array electrophoresis;
single nucleotide polymorphism; mutation detection; genetic analysis

Introduction
Progress from the Human Genome Initiative and
related efforts will soon result in the generation of the
sequence of all expressed human genes and the identity
of many more disease-causing or disease-predisposing

mutations. Knowledge of genomes of multiple other
eukaryotic and prokaryotic organisms has progressed
as well. Increasing attention has been devoted to
parallel molecular genetic analysis methods in order to
facilitate the search for multiple genetic alterations at
the same time and to advance functional genomics
(assessment of gene expression in specific tissues,
during development, or in disease states). This review
summarizes recent developments in parallel molecular
genetic analysis of interest to human genetics.

Functional genomics studies increasingly necessitate
obtaining the results of multiple molecular genetic
analyses at the same time. For example, genes which
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cause human diseases may contain many different
mutations linked to the phenotype, and efficient strate-
gies to scan for these mutations are needed. Fur-
thermore, thousands of genes are expressed in any
given cell. Differences in gene expression between cells
accompany both normal development and develop-
ment of the malignant cell phenotype. Methods for
rapid identification of differentially expressed genes
will lead to increased understanding of cell develop-
ment and perhaps better therapy for cancer. Parallel
molecular genetic analysis provides simultaneous infor-
mation about many genes. Parallel analyses can also
provide large amounts of information from small
amounts of starting cellular material. The concept of
parallel is distinct from but related to that of high
throughput, which results in the generation of large
amounts of molecular genetic information per unit
time. It is possible to have a parallel process which is
not high throughput if it takes a long time to obtain
information about multiple genes. Conversely, most
high-throughput processes are parallel, because serial
molecular genetic analyses will tend to increase the
overall time needed. Methods in which multiple wet
biochemical steps within a single tube or microwell for
each molecular analysis are followed by gel electro-
phoresis of radiolabeled products and then develop-
ment of a gel image by autoradiography have been
standard in molecular genetic analysis, but such meth-
ods are intrinsically low throughput. In this review we
examine several methods of parallel molecular genetic
analysis which are of increasing importance in a
number of fields.1–5 DNA microarrays, capillary array
electrophoresis, mass spectrometry, homogeneous solu-
tion assays and hybrids of these methods are all
particularly promising technologies.

We begin with DNA microarrays with their myriad
uses, then move to parallel mutation detection methods
and gene expression profiling methods that do not use
microarrays, and finally capillary array electrophoresis
approaches to DNA sequence analysis and micro-
satellite-based genotype analysis. Generalizable high-
throughput analytic approaches accessible to any labo-
ratory with molecular genetics expertise will be
highlighted. Areas which will not be discussed and for
which the reader is directed to recent reviews or
references include gene expression profiling in situ,6

protein expression profiling using 2D gels and mass
spectrometry analysis,7–9 parallel cellular and nucleic
acid sample preparation,10–12 and bio-informatics
approaches to data processing and interpretation.13–15

DNA Microarrays
DNA microarrays have been variously called DNA
chips and DNA biochips. The common denominator is
a solid platform with a set of immobilized nucleic acid
species that participates in a solid-fluid interfacial
interaction with a solution of complementary nucleic
acid targets. Uses of the DNA microarray include
mutation and polymorphism detection, definition of
gene expression profiles, genotyping, defining gene
organization and mapping, and DNA sequence analysis
of previously uncharacterized regions, among oth-
ers.16–30 Since a high density of genes can be studied in
parallel, only a small amount of sample is needed. This
technology is mostly robotic driven; consequently it can
easily be introduced into many research and clinical
laboratories.

Mutation and Polymorphism Detection
Microchips consisting of ordered arrays of oligonucleo-
tide probes have been applied to hybridization-based
mutation detection schemes.16–39 This approach repre-
sents in some sense a miniaturization of the use of
immobilized oligonucleotides in 96 well plates with
several important technical and conceptual differences.
With glass or silicon chips, a high degree of parallel
array formation increases the information content.
With a high number of closely related oligos on a
surface, information about partial matches may also be
obtained when perfect match duplex values are
obtained with fluorescence. Furthermore, the PCR step
which is often used to generate reagents for annealing
to immobilized probes can now be done in a silicon chip
microenvironment.40–42

The DNA microarray technique has been used to
analyze the entire human mitochondrial DNA,24 to
detect polymorphisms in the HIV-1 clade B protease
gene,25 and to detect mutations in BRCA1,26,36 the
cystic fibrosis transmembrane receptor gene and
p53.23,34 In an extension of DNA microarray technol-
ogy, Pastinen and colleagues reported allele-specific
detection of 12 common disease-causing mutations in
the Finnish population using a microarray and single-
nucleotide extension.43 Detection of beta-globin gene
alleles and mutations has also been reported by several
groups.28,44,45

Gene Expression Profiling
The potential for this type of gene expression chip is
enormous. There are at least three things one wants to
know about an mRNA in a cell. Is it present or absent?
What is its quantitative level of abundance? What
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difference is there in this level between two different
cellular samples? Parallel mRNA expression monitor-
ing by DNA microarray methods has been reported by
several different groups with different approaches. Two
papers in the peer-reviewed literature summarize the
Affymetrix experience in the gene expression area.46,47

The work demonstrates detection of transcripts at the 1
in 300 000 level, equivalent to 1 copy per cell, with a
dynamic range between 1000 and 10 000. Fragmented
RNA target preparation appears advantageous kinet-
ically, in that information was available with hybrid-
ization times as short as 2 hours. For the less abundant
transcripts, hybridization up to 20 hours was employed.
There is a very high degree of probe redundancy (20 to
300 probe pairs per target) and high complexity in the
computational analysis, both of which may relate to the
fact that light-directed in situ synthesis currently yields
only 3 to 5% of full-length, correct probe sequence per
spot for a 20 mer. They have not reported explicit
comparison with alternative probes, such as cDNA
fragments or presynthesized oligonucleotides. The gen-
eralizability of the method to any laboratory with
molecular genetics expertise is limited by the need for
photolithography, and adaptability for newly discov-
ered targets is potentially slow and costly since new
masks might need to be made.

The Stanford/Synteni groups have published several
papers using cDNA arrays to assess gene expression,
first in yeast and plants and then in human cells.48–51

The two-color approach directly provides information
comparing two cellular inputs. The cDNA microarrays
are very specific and their array methodologies are
adaptable by others [www.cmgm.stanford.edu/pbrown].
Alterations in a number of interesting genes in cellular
pathways in response to extracellular perturbations
have been identified. With cDNA probes, the kinetics of
hybridization is relatively slow and the detection of low
copy number transcripts, which account for the major-
ity of the transcripts in a cell by number, is unclear. The
reports cite 1 in 10 000 detected on a per mass basis, and
one report indicates a 1 in 100 000 detection sensitivity
on a per mass basis. With a cDNA microarray, splice
variants and closely related gene family members may
not be distinguished.

Workers at Molecular Dynamics reported gene
expression results with their arrayer and scanner at the
Hilton Head ’97 meeting [www.mdyn.com/posters/hil-
tonhead97]. In bacterial systems, 2 to 3-fold differences
in expression of transcripts at abundance levels as low
as 1:300 000 were reliably detected. Custom arraying by

the end user, after an initial investment, may meet the
needs of many research laboratories. The Molecular
Dynamics scanner employs confocal microscopy and a
photomultiplier tube and is sensitive to 0.1 attomole of
fluorescent dye per square micron.52

For microarray methods for mRNA detection and
quantitation, gene discovery efforts may benefit from
arraying probes for potentially all the expressed genes
in the human genome. Even before the whole human
genome is sequenced, the huge repertoire of expressed
sequence tagged sites (ESTs) can be arrayed and
studied.48,53 Such a chip can be used to study gene
expression during development, disease states and in
normal metabolic homeostasis. Later, disease-targeted,
user-adaptable arrays with probes for several hundred
targets may be most useful in the clinical and biological
research laboratories.

Other Anticipated Uses of DNA Microarrays
These include genetic linkage, forensic identification,
pathogen identification, sequence analysis by hybrid-
ization of previously uncharacterized regions and com-
parative genome hybridization.54–57 In addition, Single-
Nucleotide Polymorphism (SNP)-based tests are
adaptable to the microarray. The use of Southern
blotting and detection of restriction fragment length
polymorphism (RFLP) markers provided an initial
relatively low resolution human genetic map for link-
age analysis. These markers have largely been replaced
by simple sequence repeat or microsatellite markers
which are both simpler to run and are more highly
polymorphic (more informative so fewer markers must
be run to derive the same degree of confidence of
linkage in gene discovery studies). The microsatellite
map in human genetics is now quite dense, for example,
Dibs58 recently published the primer sequence and
allele size ranges of 5264 microsatellite markers. Conse-
quently, microsatellite genotyping has quickly become
adopted in linkage analysis, disease association studies,
and in the study of altered profiles diagnostic of certain
cancers (evidence of loss of heterozygosity (LOH) or
microsatellite instability (MSI). Thus, the microsatellite
markers are the current method of choice for many
molecular genetic research projects and provide the
basis of a much more dense and powerful ‘second
generation’ genetic map. However, microsatellite typ-
ing generally requires electrophoretic separation of the
PCR-amplified markers in very high-resolution gels, a
labor intensive and time-consuming process when slab-
gel electrophoresis systems are used. Consequently,
so-called ‘third generation’ marker sets are under
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development at several genomic research institutes
including the Whitehead Institute (Boston, MA) and
GenSet (Paris, France).

The third-generation markers are single-nucleotide
polymorphisms (SNP). SNP markers are fundamentally
the same as the RFLP markers (base substitutions) but
with improvements in detection methods, and are now
identified and screened without the use of electro-
phoresis or Southern blotting. SNP markers can be
detected in microplate or microarray-based formats.
The inherent variability within the human genome
results in base substitutions at approximately 1 kb
intervals. When alternative alleles (base substitutions)
have reached a frequency of 30% or greater, they can
be very useful in genetic analysis. With the very high
density of these markers in the genome, it is possible to
determine regional haplotypes (ordered alleles that
cosegregate along a common stretch of chromosome).
Haplotype mapping helps compensate for the lower
informativeness of each SNP marker relative to the
microsatellite markers. Nevertheless, it is estimated
that a 4-cM map of 750 SNP markers will be required to
provide the same degree of genetic information as a
10-cM map of approximately 300 microsatellite mark-
ers.56 The primary motivation for developing a third
generation map is that the SNP markers are much more
amenable to automation and detection on array-based
systems. For example, the Whitehead Institute, Millen-
nium and Affymetrix have an active program identify-
ing and mapping SNP markers using genomic clones
which are physically mapped. Similarly, GenSet in
collaboration with Abbott Laboratories also have an
SNP marker development program with the goal of
identifying up to 30 000 SNP markers in the human
genome by the end of 1999.

A set of SNP markers uniformly distributed across
the genome would have additional applications besides
linkage analysis. For example, the use of a 10 000 SNP
marker set would permit a genome-wide scan for loss of
heterozygosity (LOH) at a resolution of under 1 Mbase
(average spacing of the SNP markers would be 300 000
nucleotides). This would be a higher resolution LOH
scan than is currently possible using comparative
genome hybridization (CGH) carried out using cytoge-
netic approaches.57 By strategically positioning the SNP
markers to deletion prone regions of the genome and/
or to known locations of oncogenes, the utility of this
approach to LOH scanning could be further improved.
Tightly clustered SNP markers within large genes that
lead to rare genetic disorders would provide an

alternative method for a linkage-based strategy for
disease diagnostics particularly in new mutation dis-
orders (each family has a unique, uncharacterized
mutation). For example, the dystrophin gene is approx-
imately 2.4 Mbase in size and five microsatellite mark-
ers are used to follow intragenic recombination in
families where either Duchenne or Becker muscular
dystrophy are segregating and the responsible mutation
fails to be detected using standard exon-screening
tests.59–61 Approximately 24 polymorphic SNP markers
would be expected to be found within the dystrophin
gene. These would naturally have tighter spacing than
the current set of intragenic microsatellite markers. By
scoring the alleles at the SNP markers, the haplotype of
the disease-carrying allele could be identified. A link-
age-based method of diagnosis may prove more reli-
able than a mutation screening-based method in the
difficult case of accurately providing diagnosis when the
disease-causing gene is very large. Similarly, complex
disorders which have multiple genes involved might
permit rapid diagnosis using a linkage-based approach.
For example, it is estimated that there are 50 genes
responsible for inherited deafness. By haplotyping in
the vicinity of known genes that could contribute to this
disorder, fewer family members might be required to
identify which gene is involved for any one family.

Research and Development Issues in DNA
Microarrays
Research and development issues in DNA microarrays
that operate by hybridization have been the probes (the
immobilized species), the targets (the solution-phase
reverse complements of the surface probes), the sur-
faces, the detection labels, the hybridization conditions,
and the detection principle. To our knowledge, 12
separate groups worldwide including our own to date
have published the operating details of their micro-
arrays. Probes are obtained by synthesis in situ or
deposition of pre-synthesized molecules. Two main
types of synthesis in situ have been described: light-
based combinatorial16,62 or physical combination.29,63

Deposition of pre-synthesized oligonucleotides,20,44,64,65

cDNAs48–51 or nucleic acids with other base and
backbone modifications such as PNAs66–68 have been
reported. Oligonucleotide probes appear to benefit
from spacer arms that link the nucleic acids to the
surface.20,44,69 Targets have been single- or double-
stranded DNA or RNA. A few investigators have
explicitly examined varied hybridization conditions.70,71

A variety of surfaces have been described, ranging from
glass to silicon to plastic to paper to silanized
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glass.16,20,44,72,73 There is a multitude of detection labels,
radioactive and light-based. Advantages accrue to the
use of light-based detection labels. Detection labels
have been based on fluorescence or chemilumines-
cence, and both primary (label on the target) and
secondary (label on a molecule which binds a group on
the target or duplex) detection are in use.74 Detection
devices include the proximal CCD,64,75 CCD-micro-
scope,30,44 and PMT-confocal microscope21–26 systems.

Discriminating single-base mutations from normals
and especially heterozygotes is fraught with difficulties.
We and others have seen unexpected and largely
unexplainable hybridization patterns when a given
target is hybridized to a series of probes with over-
lapping sequences.44,76,77 Many examples have concen-
trated on the difficulties of detecting point mutations.
However, similar statements could be made about
present techniques for quantitating other important
molecular genetic features, such as the absolute expres-
sion levels of particular mRNAs. In each case, hybrid-
ization alone, while powerful, is unlikely to be capable
of providing a complete and unambiguous answer. We
and others are turning to combined hybridization and
reaction in situ: single-nucleotide extension (SNE),43,78

PCR in situ,79–81 reporter/quencher uncoupling chem-
istry (R/Q),82 and ligase chain reaction (LCR)83 among
others. We designate microarrays that operate by
hybridization that follows diffusion of targets to their
cognate probes as first generation DNA microarrays.
Second generation microarrays have one or more of the
following features: active capture of targets, eg by
electric field, and hybridization coupled to reaction.
There has been a lot of empiricism, but also a
considerable contribution to microarray design by
fundamental studies.35,44,45,69,72,73,76,84–87 The capture
rate of a nucleic acid in solution, J (moles/cm2), by its
reverse complement immobilized on a solid surface,
when the number of surface ‘probe’ molecules is in
molar excess, is given by:84,85

J = (πγD3/4H)C0t

Molecular biologists with experience in solution-
phase hybridization studies understand the dependence
on C0t. This theoretical result places physical observ-
ables in the factors other than C0t which determine
capture and hybrid formation specifically at the solid-
liquid interface. This J is the initial rate – eventually the
capture saturates at an inverse exponential rate, but
most detection can and does operate before that point
is reached. The parameter γ incorporates all of the 3-

and 2-dimensional diffusion effects, adsorption at the
surface, probe density within a site, probe molecular
length and target length. D3 is the solution diffusion
coefficient of the target. The smaller the target, the
larger is D3 and the more rapid its capture by the
diffusive mechanism, supporting the empirical practice
of fragmenting into smaller targets.21–26 Fragmentation
also minimizes secondary structure, an effect discussed
later. H is the boundary layer, often in the length scale
of tens of microns, over which the concentration
changes from its bulk solution value to that right at the
interface. Decreasing H, for example by stirring or by
‘excluding volume’ from the bulk solution with amphi-
pathic organic molecules like PEG or phenol increases
capture.44,86,88 If a second mechanism of capture at the
surface is included, like electric field, capture can be
enhanced. This underlies another published approach,
which is very rapid but employs more complex chip
manufacture and operation.70 The side-on orientation
of DNA molecules on common silanized surfaces has
been observed experimentally.87 Further progress in
rational design from biophysical and biochemical fun-
damental study is anticipated.

Non Microarray-based Parallel
Mutation Detection Methods
DNA sequence variation detection methods share
several conceptual issues, such as whether a known
change is being detected or a region is being scanned
for new mutations, whether the end user of the method
is a clinical laboratory or a research laboratory, whether
the change to be identified is a disease-causing muta-
tion or a polymorphism, and whether the cellular
sample is homozygous, hemizygous or heterozygous for
the change.

A wide variety of PCR-based mutation detection
methods have been described.89,90 In general the
mutation detection methods can be grouped according
to whether they are scanning or allele specific. Within
the scanning methods, they can be grouped according
to which principle of operation they employ. Well-
known applications for mutation screening include
direct DNA sequence analysis, denaturing-gradient gel
electrophoresis (DGGE),91 single-stranded conforma-
tion polymorphism (SSCP)92 and its variants dideox-
yfingerprinting (ddF)93 and restriction endonuclease
fingerprinting,94 heteroduplex analysis including chem-
ical cleavage of mismatches (CCM)95 and endonuclease
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mismatch cleavage (EMC),96 and RNase A cleavage.97

Automated fluorescence-based DNA sequence analysis
can generate 600 to 800 nucleotides of sequence data
per reaction, and in some sense is parallel in that
multiple gel electrophoresis lanes can be analyzed at
the same time, as is true for SSCP, DGGE and some of
the other methods. Allele-specific mutation/polymor-
phism detection methods include direct DNA sequence
analysis,98 reverse dot-blot with allele-specific oligonu-
cleotide hybridization,99 allele-specific PCR amplifica-
tion,100 oligonucleotide ligation amplification (OLA),101

artificial introduction of restriction sites,102 ligase chain
reaction103 and DNA minisequence analysis.104–106

PCR-OLA has been applied to DNA diagnostics,107

genetic mapping using biallelic markers108 and YAC
library screening.109 A variation on PCR-OLA to
increase sample throughput makes use of sequence-
coded separation.101 Fluorescence-based DNA mini-
sequence analysis facilitates detection of mutated
sequences.110,111 Limited primer-extension techniques,
primer-guided nucleotide incorporation, single-nucleo-
tide primer extension (SNPE) or solid-phase mini-
sequencing were developed previously to detect point
mutations by single-base extension of the primer at the
site of the mutation.104–106 These procedures use a
primer designed to hybridize just 5' of the nucleotide to
be tested. The primer is extended by a single dye-
labeled dideoxynucleotide, thereby indicating the iden-
tity of the target nucleotide in the template. Fluorescent
extension products are then detected following electro-
phoresis on denaturing polyacrylamide gels. Fluores-
cence analysis of the incorporated dye tag reveals the
identity of the template nucleotide immediately 3' to
the primer site. There are recent examples of the
application of the single nucleotide extension principle
to the microarray format.43,78

Two newer methods are cleavase fragment length
polymorphism (CFLP) and multiplex allele-specific
diagnostic assay (MASDA). CFLP is a scanning meth-
odology, while MASDA is an allele-specific method-
ology. CFLP is in the general category of secondary
structure-specific mutation detection. Whilst SSCP
reflects structure-specific mobilities, CFLP reflects
structure-specific nuclease cleavage.112 MASDA is a
multistep process in which multiplex gene-specific PCR
is followed by a forward dot-blot using a pool of
radiolabeled ASO probes.113 After the dot-blot, ver-
ification of which oligo in the pool hybridized to an
array spot is performed by a biochemical fingerprinting
assay.

To compare and contrast all of these methods with
DNA microarray methods of mutation detection, it is
clear that many non microarray methods are up and
running now while DNA microarray methods have just
passed proof-of-principle and are undergoing initial
dissemination. (CE/CAE are discussed below.) Auto-
mated fluorescence-based DNA sequence analysis con-
tinues to have many desirable features. Gel-based
methods that use multicolor fluorescence consolidate
separation with detection and have the advantage that
software analysis can be built in. The special conditions
required for running assays such as DGGE and SSCP
have made their implementation on machines designed
originally for automated DNA sequencing more prob-
lematic. The absence of a cooling unit on these
sequencers originally required SSCP gels to be run for
long times at very low current to avoid denaturing the
annealed species,114 although other investigators have
made modifications to their machines to provide
refrigeration capabilities and permit shorter run
times.115,116 Some technical modifications were also
necessary to reduce background problems in the
implementation of the fluorescent versions of the
CCM117 and dideoxyfingerprinting assay.118 Most recent
versions of automated sequencers including capillary
array electrophoresis equipment (CAE) have built-in
temperature control, which permits SSCP and other
temperature-dependent applications to be accom-
plished. Many of these assays can be done using
fluorescently-labeled reactions and appropriate detec-
tion systems, resulting in automated data collection and
semi-automated analysis.119 In most cases, the use of
fluorescence in these assays is limited only by the ability
to label the species in an efficient manner without
causing background problems.120 How robust each of
these methods are (accuracy, reproducibility and relia-
bility) is of concern to end-users and has limited the
acceptance of any one scanning or allele-specific
method in molecular genetics laboratories. Microarrays
have the inherent advantage that they can do both
scanning and allele-specific mutation detection while
consolidating the reaction step with detection, thus
skipping a distinct separation step. Since physical
localization is intrinsic to a spatially addressable array,
there is no electrophoretic separation. Currently,
microarrays avoid radioactivity and are readily oper-
ated with multicolor detection, which increases the
amount of information per spot and per unit time. One
major distinction between mutation detection methods
in the future may be microarrays vs homogeneous
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solution arrays that perform consolidated reaction and
detection with no separation step (for example, ‘molec-
ular beacon’/Reporter-Quencher systems).38,82,121 Since
these homogeneous assays are still under development,
how parallel, small and fast these are in comparison to
microarrays remain to be determined. Mass spectrome-
try-based methods have also been proposed and are
under development.31–33

Non Microarray-based Parallel
Gene Expression Profiling
Analysis of mRNA, in particular differences in expres-
sion patterns between cell types, is an area of intense
interest. At this time this is almost exclusively a
research laboratory enterprise, not one for the clinical
molecular diagnostics laboratory. Several common
methods of RNA analysis are not inherently designed
as parallel molecular genetic assays, such as northern
blot analysis, nuclease protection assays and RT-PCR.
Beyond the DNA microarray work described in the
preceding section, there are a number of parallel gene
expression profiling methods in use in many laborato-
ries. These include 

(1) subtractive hybridization and its variants, recently
reviewed in Sagerstrom et al,122 in which compar-
ison with other established methods was
discussed;

(2) differential display and its variants;

(3) differential screening of cDNA libraries;

(4) large-scale sequencing of cDNA clones or 3'-end
fragments thereof;

(5) representational difference analysis (RDA); and

(6) serial analysis of gene expression (SAGE).

Subtractive hybridization (SH), differential display,
differential screening, large-scale sequencing and RDA
have been in the literature for several years, reviewed
recently and are in use in many laboratories. Recent
variations of these methods to improve their perform-
ance have been described. Improvements in subtractive
hybridization may come from positive selection and
so-called suppressive hybridization methods.123 Ele-
ments of suppressive hybridization have also been
combined recently with elements of differential screen-
ing. A variant of differential display PCR has been
published recently called ordered dd-PCR.124 Normal-

ized or self-subtracted libraries appear to enhance
performance in large scale DNA sequencing.122 In
commercial research labs, large-scale cDNA sequenc-
ing has been reported to identify many novel cDNAs.
Much has been learned from the SAGE method.125–127

SAGE works by cloning and sequencing strings of 9 to
11 bp fragments from cDNA libraries, and uses statis-
tical sequence analysis first to assign the fragments
uniquely to transcripts and then to calculate abundance.
Many of the findings from classic hybridization studies
in the 1970s concerning the number and abundance
classes of mRNAs in cells have been confirmed;122,128

86% of transcripts by number are present at less than 5
copies per cell. Of the approximately 15 000 distinct
transcripts in a cell, 1–2% differ in cells of closely
related origins. If cells of more disparate origins are
compared, the percentage of differentially expressed
transcripts may rise to 3–5%. Differentially expressed
transcripts occur in all abundance classes. SAGE is
unfortunately not high throughput and thus is not
amenable to the clinical laboratory.

Capillary Array Electrophoresis
Methods for DNA Sequence
Analysis and Microsatellite
Genotype Analysis
Recently, fluorescence detection systems have been
coupled with the speed and convenience of capillary
electrophoresis (CE) systems which have potential for
rapid, high-throughput genetic analysis without the
constraints and disadvantages of slab-gel based systems.
These systems have already been used to analyze
fluorescent sequencing reactions and a variety of dye-
labeled fragments.129,130 Multiple arrays of capillaries
and advances in separation matrices will further
enhance resolution, sample throughput and decrease
run times. Capillary technology also has the potential to
be engineered on a microchip scale, decreasing electro-
phoresis times by an order of magnitude.131–133

Mathies and co-workers developed a laser-excited,
confocal fluorescence imaging system for DNA
sequencing or mapping fragments in a planar array of
several capillaries simultaneously, a technology known
as capillary array electrophoresis (CAE).134,135 CAE
offers an excellent opportunity to develop instrumenta-
tion capable of striking increases in efficiency and
convenience for DNA analysis. Molecular Dynamics,
extending the work in CAE, is developing instrument
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systems capable of scanning across 48–96 parallel
capillaries.136,137 This could increase throughput of
fluorescence DNA sequencing and mapping by over an
order of magnitude.

Labor-intensive steps of fragment separations are
eliminated by CAE. Slab gel preparation is replaced by
automated capillary filling using a low-viscosity gel
matrix, refillable capillaries and a pressurized gel-filling
station.138 The process is complete within 10 minutes
without user intervention. Gel loading, another tedious,
labor-intensive step, is replaced with electrokinetic
injection of 48–96 samples at a time. Capillaries are
then purged and refilled using the gel-filling station on
the instrument. Thus, the increase in sample throughout
is not limited to electrophoresis time, but all steps of gel
preparation and sample loading. Use of 4-color chem-
istries has been used in DNA sequencing and permits
detection of multiple genetic markers with overlapping
size ranges. Multiplexing strategies increase sample
throughput and conserve reagent costs when done
during the PCR amplification step.

Estimated time from capillary filling, sample injec-
tion, separation and refilling of the capillary for the
next run is under 1.5 hours.138,139 With continuous
operation (16 runs per day), 1536 samples could be
processed per day by CAE. By using the 4-color
multiplex strategy that has been applied to slab-gel
electrophoresis systems, 27 648 genotypes could be
determined per day (1536 samples 3 3 colors of

labels 3 6 loci/color) compared to a maximum of
4 runs in 24 hours on current slab-gel systems. The CAE
approach translates into 2304 genotype analyses per
day (128 samples 3 3 colors of labels 3 6 loci/color).
Thus, CAE systems would have a ten-fold greater
throughput and require much less hands-on time for
operation.

Conclusions
We have witnessed the initial impact of parallel
molecular genetic analysis, increasing sample through-
put and facilitating semi-automated data analysis. More
importantly, these new technologies, such as DNA
microarrays and capillary array electrophoresis, replace
standard molecular biology platforms and may lead to
further technological advances in genetic analysis. In
addition, recent developments in scanner technology
promise to reduce the time needed to obtain large
amounts of information at the same time.

Some specific comparative strengths and weaknesses
of analytic technologies for mutation detection and
gene expression profiling have been listed in the
individual sections. Here we summarize a framework
for decision making in selecting available technology
options, which is tabulated in Table 1 for seven of the
most common molecular genetic tasks. Our philosophy
is to list the technology options for which there is a
body of literature and to identify the criteria for

Table 1 Parallel molecular genetic analysis – framework for decision making in selecting available technology options

Molecular genetic task1 Analytic technology options Criteria for selection by end users3

A Mutation detection, allele-specific 1, 2, 3, 4, 5, 6, 7 A, B, C, D, E, F
B Mutation detection, scanning known gene(s) 1, 3, 4 A, D, E, F
C Sequence analysis, previously unknown region 1, 3, 4 A, D
D Polymorphism scoring, eg for linkage

microsatellite (MS) 3, 4, 5, 7 A, B, C
single nucleotide polymorphism (SNP) 1, 2 A, C, D

E Gene expression profiling 1 A, C, D, E, F
F Gene copy number determination 1, 4, 5 A, C

Key:
A 18, 19, 31–33, 35, 36, 43, 45, 63, 78, 117 1 DNA microarray, 1st generation A Cost – upfront
B 17, 21–29, 31, 34, 36, 37, 39, 42, 55, 64–66, 70–72, 75 2. DNA microarray, 2nd generation B Cost – ongoing operation
C 37, 39, 129, 133, 137 3 Rapid gel-based systems C How parallel
D (MS) 31, 131, 132, 138, 139 4 Capillary array electrophoresis D How high-throughput
D (SNP) 20, 30 5 Homogeneous solution assay E How adaptable
E 46–54 6 Mass spectroscopy F How generalizable
F 57, 83, 121 7 Hybrid of the above
1Tasks range from allele-specific to genome-wide; additional uses in research and development include forensic identification,
pathogen identification, microsatellite instability analysis and DNA methylation analysis.
2References based primarily on the peer-reviewed literature up to 01/31/1998.
3End users include biomedical research laboratories, molecular diagnostic clinical laboratories and the pharmaceutical industry.
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selection by end users. The literature in this area is
exploding rapidly, and our tabulation is as of 30 January
1998. Updates will clearly be needed in the future, and
other recent reviews offer alternative opinions.52,140–143

The technology option which is best will be driven by
different criteria for different users. The relative impor-
tance of upfront and ongoing operational costs and how
adaptable and generalizable a technology is will depend
on whether one is in an academic biomedical research
center, a clinical molecular diagnostics laboratory or
the pharmaceutical industry, among other venues. By
generalizable we mean able to be used by any
laboratory with current molecular genetics expertise.
By adaptable we mean able to be used for new genes or
by multiple users with different interests. In first
generation DNA microarray technology, the upfront
costs for an arrayer and a scanner system are of the
order of $200 000–250 000. Chip costs vary between pre-
made and marketed and making one’s own. High
volume use keeps the per chip cost low, and then
operator time and sample preparation become sig-
nificant ongoing operational costs. Capillary array
electrophoresis units are expected to cost under
$200 000 initially, and operating costs will be compara-
ble to gel-based systems. In summary, in Table 1 we
provide a framework by which readers can make their
own best decisions.

We anticipate that in the future consolidation of
function and miniaturization will continue. Consolida-
tion of the functions of sample preparation, target
amplification and labelling, real time detection, analysis
and informatics will result in very powerful tools. As the
Human Genome Initiative meets its objectives, we may
find a return to a focus on parallel molecular genetic
technologies for specific diseases and conditions, eg all
cardiovascular disease susceptibility genetic changes, all
molecular alterations present in leukemia, all genetic
variations relevant to drug metabolism, etc.
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