Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Many eyes on Earth

This article has been updated

Swarms of small satellites set to deliver close to real-time imagery of swathes of the planet.

Skybox Imaging plans to launch 24 high-resolution SkySats in the next few years. Credit: Matt McDonald/Skybox Imaging

Imagine using Google Earth or other online mapping tools to zoom in on high-resolution satellite images of the planet taken just hours or days ago. Navigating backwards and forwards in time, one could track changes in everything from crops, forests and wildlife movement to urban sprawl and natural disasters, all with unrivalled temporal precision.

Earth-sized exoplanet might be covered with clouds of molten salt Climate change will make a bad problem worse for drought-stricken Africa Watered-down EU 'buddy' institution programme might not help to stem nepotism

This is the vision of two Californian start-up companies that are set to launch swarms of small imaging satellites, which, by virtue of their sheer numbers, will be able to revisit and photograph huge swathes of the planet as often as several times each day — a frequency much higher than that achieved by current Earth-observing satellites.

San Francisco-based Planet Labs, founded in 2010 by three former NASA scientists, is scheduled to launch 28 of its ‘Doves’ on 8 January. Each toaster-sized device weighs about 5 kilograms and can take images at a resolution of 3–5 metres.

At Skybox Imaging in nearby Palo Alto, plans are afoot for a swarm of 24 satellites, each weighing about 100 kilograms, which will take images of 1 metre resolution or better. Skybox launched its first satellite on 21 November and plans to launch another this year, followed by the remainder between 2015 and 2017.

In a first — at least for civilian satellites — Skybox’s devices will also stream short segments of near-live high-resolution video footage of the planet. So, too, will UrtheCast, a start-up based in Vancouver, Canada, whose cameras will hitch a ride on the International Space Station (see 'Earth goes under video surveillance').


The efforts could herald a sea change for imaging. Conventional imaging satellites, which are the size of a van and weigh tonnes, cost hundreds of millions of dollars to build and launch (see ‘The swarm cometh’). As a result, there are only a handful of operators, and the commercial world fleet comprises fewer than 20 satellites. Commercial satellites also tend to take pictures mainly when their operators receive orders from customers.

By contrast, the swarm satellites’ cameras will always be on, photographing everything in their path and, owing to their numbers, will pass over the same points on Earth with a frequency of hours to a few days, depending on latitude.

The biggest customers of conventional commercial imaging satellites are governments, in particular intelligence agencies and the military. Prices can be prohibitive for many other potential users, including researchers, in areas as diverse as farming, forest carbon management, regional and local planning, and environmental stewardship. By making their images cheaper, the new entrants into the marketplace hope to spur a proliferation of innovative uses. They also hope to offer heavy discounts or even make imagery free to academics and non-governmental organizations.

“This sector has for so long been driven by government requirements and, to a lesser extent, big industry players, that the mass-market consumer — the long tail — has been almost completely neglected,” says Scott Larson, chief executive of UrtheCast. Cheaper imagery, he says, will lead to “the democratization of near-real-time Earth-observation data”.

To slash costs, Planet Labs and Skybox Imaging use off-the-shelf technologies from the automotive, smartphone and other consumer industries — including low-cost electronics, and sensors from high-end digital cameras. Using the latest technologies from these fast-paced industries also allows the rapid, continuous development of better and better satellites, says Will Marshall, chief executive of Planet Labs. And miniaturizing satellites reduces launch costs.

Because the swarms are still to be launched, scientists have yet to fully assess the quality of the imagery. But the satellites’ spatial resolutions of 1–5 metres are much higher than those of most scientific satellites. Landsat, NASA’s Earth-observation workhorse, for example, has a resolution of 15–100 metres depending on the spectral frequency, with 30 metres in the visible-light range.

Such medium-resolution imagery is adequate for many purposes, but higher resolution can have benefits, says Dan Berkenstock, co-founder and chief product officer of Skybox Imaging. He points to a study published in November that found that the use of moderate-resolution Landsat imagery greatly underestimated forest loss in the Democratic Republic of the Congo (A. Tyukavina et al. Environ. Res. Lett. 8, 044039; 2013).

Precision agriculture, a method that uses remote sensing to aid farm management, will also benefit from swarms, says Berkenstock, because the technology will be able to provide timely crop-yield and health estimates down to the level of rows of plants. Such detail could inform decisions on fertilizer and irrigation use, but is currently out of reach of most farmers.

However, spatial resolution is only part of the picture, says Mike Wulder, a researcher at the Canadian Forest Service in Victoria and a member of the Landsat science team. He uses remote sensing to study forests, and notes that good spectral and radiometric resolution (detection of small differences in wavelength and radiation, respectively), are essential for quantitative scientific analyses. “These very small satellites should not be expected to provide data that are similar or in competition with full-blown Earth-observing satellites,” he says. “They occupy a different niche.”

The scientific value of the swarm data will be “radically dependent” on quality issues, says Greg Asner, an Earth scientist at the Carnegie Institution for Science in Stanford, California. Stitching together such frequent-repeat imagery from so many satellites will be challenging, because performance will probably differ between satellites and vary over time, he argues.

But he is nonetheless excited at the prospect of constantly updated fresh imagery. “It will almost be like updating Google Earth each day,” he says.

Change history

  • 08 January 2014

    After Nature went to press, space weather and solar flares delayed the scheduled launch of the Dove satellites until 9 January.


Related links

Related links

Related links in Nature Research

Crowdsourcing goes mainstream in typhoon response 2013-Nov-20

ESA’s climate-eye dilemma 2013-Mar-05

Landsat 8 to the rescue 2013-Feb-06

Microsatellites aim to fill weather-data gap 2012-Nov-28

Europe loses sight of Earth 2012-Apr-24

Vega rocket aims to make space research affordable 2012-Jan-31

Nature special: Earth observation

Blog post: Steep decline projected for US Earth-observing satellites

Related external links

Planet Labs

Skybox Imaging


Rights and permissions

Reprints and Permissions

About this article

Cite this article

Butler, D. Many eyes on Earth. Nature 505, 143–144 (2014).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing