Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.


Rewriting a genome

A bacterial enzyme that uses guide RNA molecules to target DNA for cleavage has been adopted as a programmable tool to site-specifically modify genomes of cells and organisms, from bacteria and human cells to whole zebrafish.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Targeted genome editing with RNA-guided Cas9.


  1. Ishino, Y., Shinagawa, H., Makino, K., Amemura, M. & Nakata, A. J. Bacteriol. 169, 5429–5433 (1987).

    Article  CAS  Google Scholar 

  2. Cong, L. et al. Science 339, 819–823 (2013).

    Article  ADS  CAS  Google Scholar 

  3. Mali, P. et al. Science 339, 823–826 (2013).

    Article  ADS  CAS  Google Scholar 

  4. Cho, S. W., Kim, S., Kim, J. M. & Kim, J. S. Nature Biotechnol. 31, 230–232 (2013).10.1038/nbt.2507

    Article  CAS  Google Scholar 

  5. Hwang, W. Y. et al. Nature Biotechnol. 31, 227–229 (2013).10.1038/nbt.2501

    Article  CAS  Google Scholar 

  6. Jiang, W., Bikard, D., Cox, D., Zhang, F. & Marraffini, L. A. Nature Biotechnol. 31, 233–239 (2013).10.1038/nbt.2508

    Article  CAS  Google Scholar 

  7. Jinek, M. et al. Science 337, 816–821 (2012).

    Article  ADS  CAS  Google Scholar 

  8. Jansen, R., Embden, J. D., Gaastra, W. & Schouls, L. M. Mol. Microbiol. 43, 1565–1575 (2002).

    Article  CAS  Google Scholar 

  9. Haft, D. H., Selengut, J., Mongodin, E. F. & Nelson, K. E. PLoS Comput. Biol. 1, e60 (2005).

    Article  ADS  Google Scholar 

  10. Mojica, F. J., Diez-Villasenor, C., Garcia-Martinez, J. & Soria, E. J. Mol. Evol. 60, 174–182 (2005).

    Article  ADS  CAS  Google Scholar 

  11. Pourcel, C., Salvignol, G. & Vergnaud, G. Microbiology 151, 653–663 (2005).

    Article  CAS  Google Scholar 

  12. Makarova, K. S., Grishin, N. V., Shabalina, S. A., Wolf, Y. I. & Koonin, E. V. Biol. Direct 1, 7 (2006).

    Article  Google Scholar 

  13. Barrangou, R. et al. Science 315, 1709–1712 (2007).

    Article  ADS  CAS  Google Scholar 

  14. Brouns, S. J. et al. Science 321, 960–964 (2008).

    Article  ADS  CAS  Google Scholar 

  15. Deltcheva, E. et al. Nature 471, 602–607 (2011).

    Article  ADS  CAS  Google Scholar 

  16. Garneau, J. E. et al. Nature 468, 67–71 (2010).

    Article  ADS  CAS  Google Scholar 

  17. Sapranauskas, R. et al. Nucleic Acids Res. 39, 9275–9282 (2011).

    Article  CAS  Google Scholar 

  18. Carroll, D. Mol. Ther. 20, 1658–1660 (2012).

    Article  CAS  Google Scholar 

  19. Jinek, M. et al. eLIFE (2013).

  20. Qi, L. S. et al. Cell 152, 1173–1183 (2013).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding authors

Correspondence to Emmanuelle Charpentier or Jennifer A. Doudna.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Charpentier, E., Doudna, J. Rewriting a genome. Nature 495, 50–51 (2013).

Download citation

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research