natureinsight Regulatory RNA

16 February 2012 / Vol 482 / Issue No 7385

Cover illustration by Nik Spencer

Editor, Nature Philip Campbell

Publishing Nick Campbell Insights Editor

Ursula Weiss

Production Editor Nicola Bailey

Art Editor Nik Spencer

Sponsorship Gerard Preston

Production Emilia Orviss

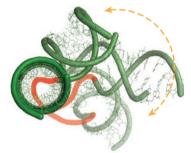
Marketing Elena Woodstock Hannah Phipps

Editorial Assistant Hazel Mayhew

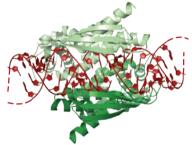
The Macmillan Building 4 Crinan Street London N1 9XW, UK Tel: +44 (0) 20 7833 4000 e: nature@nature.com

A lthough proponents of RNA might beg to differ, in the hierarchy of popular interest, DNA has historically held more sway. Being able to decipher genomes was seen as a milestone on the way to understanding life itself. What genome-wide RNA sequencing studies have revealed, however, is the unexpected complexity of RNA species encoded by DNA, most of which do not code for a protein. We now appreciate that such non-coding RNAs exert important regulatory controls on many biological processes.

The reviews in this Insight illustrate some of these principles. RNA is synthesized as a single-stranded molecule, but it is able to base-pair with itself, other RNA molecules or DNA. Hashim Al-Hashimi and colleagues discuss how secondary and tertiary structures of RNA are influenced by external cues to elicit a specific functional output. The cell exploits this dynamism to regulate processes such as transcription, post-transcriptional processing and translation. Jennifer Doudna and colleagues review a microbial adaptive immune system, CRISPR (clustered regularly interspaced short palindromic repeat). This system incorporates small pieces of invading viral or plasmid sequences into the bacterial genome as CRISPR loci; when future invasions occur, the expressed CRISPR RNAs recognize the foreign nucleic acids and mediate their degradation. The physiological function of many long non-coding RNAs remains undetermined, but Mitchell Guttman and John Rinn propose a model in which these molecules act in a modular fashion to bind different proteins or hybridize to various DNAs or RNAs; this modularity expands the scope of a single RNA's function. Finally, Amaia Lujambio and Scott Lowe highlight the role of another class of much shorter, non-coding RNA — microRNAs — in cancer development and suppression, and as a target for therapeutic intervention.

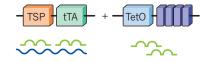

We hope these reviews provide a flavour of how the inherent properties of RNA make it a robust species to regulate cellular processes.

Angela K. Eggleston, Alex Eccleston, Barbara Marte & Claudia Lupp Senior Editors


CONTENTS

REVIEWS

322 Functional complexity and regulation through RNA dynamics Elizabeth A. Dethoff, Jeetender Chugh, Anthony M. Mustoe & Hashim M. Al-Hashimi


331 RNA-guided genetic silencing systems in bacteria and archaea Blake Wiedenheft, Samuel H. Sternberg & Jennifer A. Doudna

339 Modular regulatory principles of large non-coding RNAs Mitchell Guttman & John L. Rinn

347 The microcosmos of cancer Amaia Lujambio & Scott W. Lowe

