Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Infrared spectrum of an extremely cool white-dwarf star

Abstract

White dwarfs are the remnant cores of stars that initially had masses of less than 8 solar masses. They cool gradually over billions of years, and have been suggested1,2 to make up much of the ‘dark matter’ in the halo of the Milky Way. But extremely cool white dwarfs have proved difficult to detect, owing to both their faintness and their anticipated similarity in colour to other classes of dwarf stars. Recent improved models3,4,5 indicate that white dwarfs are much more blue than previously supposed, suggesting that the earlier searches may have been looking for the wrong kinds of objects. Here we report an infrared spectrum of an extremely cool white dwarf that is consistent with the new models. We determine the star's temperature to be 3,500 ± 200 K, making it the coolest known white dwarf. The kinematics of this star indicate that it is in the halo of the Milky Way, and the density of such objects implied by the serendipitous discovery of this star is consistent with white dwarfs dominating the dark matter in the halo.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Spectrum of the cool white dwarf WD0346+246.

Similar content being viewed by others

References

  1. Chabrier,G., Segretain,L. & Mera,D. Contribution of brown dwarfs and white dwarfs to recent microlensing observations and the halo mass budget. Astrophys. J. 468, L21–L24 (1996).

    Article  ADS  CAS  Google Scholar 

  2. Alcock,C. et al. The MACHO project Large Magellanic Cloud microlensing results from the first two years and the nature of the Galactic dark halo. Astrophys. J. 486, 697–726 (1997).

    Article  ADS  Google Scholar 

  3. Hansen,B. M. S. Old and blue white-dwarf stars as a detectable source of microlensing events. Nature 394, 860–862 (1998).

    Article  ADS  CAS  Google Scholar 

  4. Hansen,B. M. S. Cooling models for old white dwarfs. Astrophys. J. 502, 680–695 (1999).

    Article  ADS  Google Scholar 

  5. Saumon,D. & Jacobsen,S. B. Pure hydrogen model atmospheres for very cool white dwarfs. Astrophys. J. 511, L107–L110 (1999).

    Article  ADS  CAS  Google Scholar 

  6. Liebert,J., Dahn,C. C. & Monet,D. G. The luminosity fraction of white dwarfs. Astrophys. J. 332, 891–909 (1988).

    Article  ADS  CAS  Google Scholar 

  7. Luyten,W. J. NLTT Catalog (Univ. Minnesota Press, Minneapolis, 1979).

    Google Scholar 

  8. Winget,D. E. et al. An independent method for determining the age of the universe. Astrophys. J. 315, L77–L81 (1987).

    Article  ADS  CAS  Google Scholar 

  9. Wood,M. A. Constraints on the age and evolution of the Galaxy from the white dwarf luminosity function. Astrophys. J. 386, 539–561 (1992).

    Article  ADS  Google Scholar 

  10. Leggett,S. K., Ruiz,M. T. & Bergeron,P. The cool white dwarf luminosity function and the age of the Galactic Disk. Astrophys. J. 497, 294–302 (1998).

    Article  ADS  CAS  Google Scholar 

  11. Oswalt,T. D., Smith,J. A., Wood,M. A. & Hintzen,P. A lower limit of 9.5 Gyr on the age of the Galactic disk from the oldest white dwarf stars. Nature 382, 692–694 (1996).

    Article  ADS  CAS  Google Scholar 

  12. Knox,R. A., Hawkins,M. R. S. & Hambly,N. C. A survey for cool white dwarfs and the age of the Galactic Disk. Mon. Not. R. Astron. Soc. 306, 636–752 (1999).

    Article  ADS  Google Scholar 

  13. Ruiz,M. T. New cool degenerate stars. Astron. J. 111, 1267–1270 (1996).

    Article  ADS  CAS  Google Scholar 

  14. Festin,L. The luminosity function of white dwarfs and M dwarfs using dark nebulae as opaque outer screens. Astron. Astrophys. 336, 883–894 (1998).

    ADS  Google Scholar 

  15. Flynn,C., Gould,A. & Bahcall,J. N. Hubble Deep Field constraint on baryonic dark matter. Astrophys. J. 466, L55–L58 (1996).

    Article  ADS  CAS  Google Scholar 

  16. Elson,R. A. W., Santiago,B. X. & Gilmore,G. F. Halo stars, starbursts, and distant globular clusters: A survey of unresolved objects in the Hubble Deep Field. New Astron. 1, 1–16 (1996).

    Article  ADS  Google Scholar 

  17. Mendez,R. A., Minniti,D., de Marchi,G., Baker,A. & Couch,W. J. Starcounts in the Hubble Deep Field: Constraining Galactic structure models. Mon. Not. R. Astron. Soc. 283, 666–672 (1996).

    Article  ADS  Google Scholar 

  18. Graff,D. S., Laughlin,G. & Freese,K. MACHOs, white dwarfs and the age of the universe. Astrophys. J. 499, 7–19 (1998).

    Article  ADS  CAS  Google Scholar 

  19. Tamanaha,C. M., Silk,J., Wood,M. A. & Winget,D. E. The white dwarf luminosity function—A possible probe of the Galactic Halo. Astrophys. J. 358, 164–169 (1990).

    Article  ADS  Google Scholar 

  20. Hambly,N. C., Smartt,S. J. & Hodgkin,S. T. WD0346+246: A very low luminosity, cool degenerate in Taurus. Astrophys. J. 489, L157–L160 (1997).

    Article  ADS  Google Scholar 

  21. Hambly,N. C. et al. On the parallax of WD0346+246: a Halo white dwarf candidate. Mon. Not. R. Astron. Soc. 309, L33–L36 (1999).

    Article  ADS  Google Scholar 

  22. Harris,H. C. et al. A very low-luminosity, very cool, DC white dwarf. Astrophys. J. 524, 1000–1007 (1999).

    Article  ADS  CAS  Google Scholar 

  23. Borysow,A., Jørgensen,U. G. & Zheng,C. Model atmospheres of cool, low-metallicity stars: the importance of collision-induced absorption. Astron. Astrophys. 324, 185–195 (1997).

    ADS  CAS  Google Scholar 

  24. Wood,M. A. in White Dwarfs (eds Koester, D. & Werner, K.) 41–45 (Springer, Berlin Heidelberg, 1995).

    Book  Google Scholar 

  25. Ruiz,M. T., Bergeron,P., Leggett,S. K. & Anguita,C. The extremely low luminosity white dwarf ESO 439-26. Astrophys. J. 455, L159–L162 (1995).

    Article  ADS  CAS  Google Scholar 

  26. Ryan,S. G. & Norris,J. E. Subdwarf studies. II—abundances and kinematics from medium resolution spectra. Astron. J. 101, 1835–1864 (1991).

    Article  ADS  CAS  Google Scholar 

  27. Dahn,C. C., Liebert,J., Harris,H. C. & Guetter,H. H. in The Bottom of the Main Sequence—and Beyond (ed. Tinney, C. G.) 239–248 (Springer, Berlin Heidelberg, 1995).

    Book  Google Scholar 

  28. Gizis,J. E. & Reid,I. N. M subdwarfs: the population II luminosity function. Astron. J. 117, 508–520 (1999).

    Article  ADS  CAS  Google Scholar 

  29. Richer,H. B. et al. Isochrones and luminosity functions for old white dwarfs. Astrophys. J. (in the press).

  30. Matthews,K. & Soifer,B. T. The near infrared camera on the W.M. Keck telescope. Exp. Astron. 3, 77–84 (1994).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The UK Infrared Telescope is operated by the Joint Astronomy Centre on behalf of the UK Particle Physics and Astronomy Research Council. Some of the data presented here were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and NASA. The Observatory was made possible by the support of the W. M. Keck Foundation. S.T.H. and S.J.S. were supported by the PPARC; B.R.O. was supported by FUTDI and a Hubble postdoctoral research fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. T. Hodgkin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hodgkin, S., Oppenheimer, B., Hambly, N. et al. Infrared spectrum of an extremely cool white-dwarf star. Nature 403, 57–59 (2000). https://doi.org/10.1038/47431

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/47431

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing