Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

You are viewing this page in draft mode.

The language of covalent histone modifications

Abstract

Histone proteins and the nucleosomes they form with DNA are the fundamental building blocks of eukaryotic chromatin. A diverse array of post-translational modifications that often occur on tail domains of these proteins has been well documented. Although the function of these highly conserved modifications has remained elusive, converging biochemical and genetic evidence suggests functions in several chromatin-based processes. We propose that distinct histone modifications, on one or more tails, act sequentially or in combination to form a ‘histone code’ that is, read by other proteins to bring about distinct downstream events.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Chromatin organization and the tail of histone H3.
Figure 2: The ‘histone code’ hypothesis.
Figure 3: Coordinated recruitment of histone-modifying activities.

References

  1. 1

    Luger,K. & Richmond,T. J. The histone tails of the nucleosome. Curr. Opin. Genet. Dev. 8, 140–146 (1998).

    CAS  Article  Google Scholar 

  2. 2

    Kornberg,R. D. & Lorch,Y. Twenty-five years of the nucleosome, fundamental particle of the eukaryotic chromosome. Cell 98, 285–294 (1999).

    CAS  Google Scholar 

  3. 3

    van Holde,K. E. in Chromatin (ed. Rich, A.) 111–148 (Springer, New York, 1988).

    Google Scholar 

  4. 4

    Wolffe,A. P. & Hayes,J. J. Chromatin disruption and modification. Nucleic Acids Res. 27, 711–720 (1999).

    CAS  Article  Google Scholar 

  5. 5

    Hecht,A., Laroche,T., Strahl-Bolsinger,S., Gasser,S. M. & Grunstein,M. Histone H3 and H4 N-termini interact with SIR3 and SIR4 proteins: a molecular model for the formation of heterochromatin in yeast. Cell 80, 583–592 (1995).

    CAS  Article  Google Scholar 

  6. 6

    Edmondson,D. G., Smith,M. M. & Roth,S. Y. Repression domain of the yeast global repressor Tup1 interacts directly with histones H3 and H4. Genes Dev. 10, 1247–1259 (1996).

    CAS  Article  Google Scholar 

  7. 7

    Luger,K., Mader,A. W., Richmond,R. K., Sargent,D. F. & Richmond,T. J. Crystal structure of the nucleosome core particle at 2.8 Å resolution. Nature 389, 251–260 (1997).

    ADS  CAS  Article  Google Scholar 

  8. 8

    Hansen,J. C., Tse,C. & Wolffe,A. P. Structure and function of the core histone N-termini: more than meets the eye. Biochemistry 37, 17637–17641 (1998).

    CAS  Article  Google Scholar 

  9. 9

    Mizzen,C. et al. Signaling to chromatin through histone modifications: how clear is the signal? Cold Spring Harb. Symp. Quant. Biol. 63, 469–481 (1998).

    CAS  Article  Google Scholar 

  10. 10

    Turner,B. M. Decoding the nucleosome. Cell 75, 5–8 (1993).

    CAS  Article  Google Scholar 

  11. 11

    Lopez-Rodas,G. et al. Histone deacetylase. A key enzyme for the binding of regulatory proteins to chromatin. FEBS Lett. 317, 175–180 (1993).

    CAS  Article  Google Scholar 

  12. 12

    Loidl,P. Histone acetylation: facts and questions. Chromosoma 103, 441–449 (1994).

    CAS  Article  Google Scholar 

  13. 13

    Tordera,V., Sendra,R. & Perez-Ortin,J. E. The role of histones and their modifications in the informative content of chromatin. Experientia 49, 780–788 (1993).

    CAS  Article  Google Scholar 

  14. 14

    Grunstein,M. Histone acetylation in chromatin structure and transcription. Nature 389, 349–352 (1997).

    ADS  CAS  Article  Google Scholar 

  15. 15

    Struhl,K. Histone acetylation and transcriptional regulatory mechanisms. Genes Dev. 12, 599–606 (1998).

    CAS  Article  Google Scholar 

  16. 16

    Thorne,A. W., Kmiciek,D., Mitchelson,K., Sautiere,P. & Crane-Robinson,C. Patterns of histone acetylation. Eur. J. Biochem. 193, 701–713 (1990).

    CAS  Article  Google Scholar 

  17. 17

    Kuo,M. H. et al. Transcription-linked acetylation by Gcn5p of histones H3 and H4 at specific lysines. Nature 383, 269–272 (1996).

    ADS  CAS  Article  Google Scholar 

  18. 18

    Grant,P. A. et al. Expanded lysine acetylation specificity of Gcn5 in native complexes. J. Biol. Chem. 274, 5895–5900 (1999).

    CAS  Article  Google Scholar 

  19. 19

    Zhang,W., Bone,J. R., Edmondson,D. G., Turner,B. M. & Roth,S. Y. Essential and redundant functions of histone acetylation revealed by mutation of target lysines and loss of the Gcn5p acetyltransferase. EMBO J. 17, 3155–3167 (1998).

    CAS  Article  Google Scholar 

  20. 20

    Rojas,J. R. et al. Structure of Tetrahymena GCN5 bound to coenzyme A and a histone H3 peptide. Nature 401, 93–98 (1999).

    ADS  CAS  Article  Google Scholar 

  21. 21

    Tanner,K. G. et al. Catalytic mechanism and function of invariant glutamic acid 173 from the histone acetyltransferase GCN5 transcriptional coactivator. J. Biol. Chem. 274, 18157–18160 (1999).

    CAS  Article  Google Scholar 

  22. 22

    Trievel,R. C. et al. Crystal structure and mechanism of histone acetylation of the yeast GCN5 transcriptional coactivator. Proc. Natl Acad. Sci. USA 96, 8931–8936 (1999).

    ADS  CAS  Article  Google Scholar 

  23. 23

    Clements,A. et al. Crystal structure of the histone acetyltransferase domain of the human PCAF transcriptional regulator bound to coenzyme A. EMBO J. 18, 3521–3532 (1999).

    CAS  Article  Google Scholar 

  24. 24

    Lin,Y., Fletcher,C. M., Zhou,J., Allis,C. D. & Wagner,G. Solution structure of the catalytic domain of GCN5 histone acetyltransferase bound to coenzyme A. Nature 400, 86–89 (1999).

    ADS  CAS  Article  Google Scholar 

  25. 25

    Sternglanz,R. & Schindelin,H. Structure and mechanism of action of the histone acetyltransferase gcn5 and similarity to other N-acetyltransferases. Proc. Natl Acad. Sci. USA 96, 8807–8808 (1999).

    ADS  CAS  Article  Google Scholar 

  26. 26

    Kimura,A. & Horikoshi,M. How do histone acetyltransferases select lysine residues in core histones? FEBS Lett. 431, 131–133 (1998).

    CAS  Article  Google Scholar 

  27. 27

    Turner,B. M. & O'Neill,L. P. Histone acetylation in chromatin and chromosomes. Semin. Cell Biol. 6, 229–236 (1995).

    CAS  Article  Google Scholar 

  28. 28

    Annunziato,A. T. in The Nucleus (ed. Wolffe, A. P.) 31–56 (JAI, Greenwich, Connecticut, 1995).

    Book  Google Scholar 

  29. 29

    Allis,C. D., Chicoine,L. G., Richman,R. & Schulman,I. G. Deposition-related histone acetylation in micronuclei of conjugating Tetrahymena. Proc. Natl Acad. Sci. USA 82, 8048–8052 (1985).

    ADS  CAS  Article  Google Scholar 

  30. 30

    Sobel,R. E., Cook,R. G., Perry,C. A., Annunziato,A. T. & Allis,C. D. Conservation of deposition-related acetylation sites in newly synthesized histones H3 and H4. Proc. Natl Acad. Sci. USA 92, 1237–1241 (1995).

    ADS  CAS  Article  Google Scholar 

  31. 31

    Tyler,J. K. et al. The RCAF complex mediates chromatin assembly during DNA replication and repair. Nature 402, 555–560 (1999).

    ADS  CAS  Article  Google Scholar 

  32. 32

    Bradbury,E. M. Reversible histone modifications and the chromosome cell cycle. Bioessays 14, 9–16 (1992).

    CAS  Article  Google Scholar 

  33. 33

    Koshland,D. & Strunnikov,A. Mitotic chromosome condensation. Annu. Rev. Cell Dev. Biol. 12, 305–333 (1996).

    CAS  Article  Google Scholar 

  34. 34

    Mahadevan,L. C., Willis,A. C. & Barratt,M. J. Rapid histone H3 phosphorylation in response to growth factors, phorbol esters, okadaic acid, and protein synthesis inhibitors. Cell 65, 775–783 (1991).

    CAS  Article  Google Scholar 

  35. 35

    Thomson,S., Mahadevan,L. C. & Clayton,A. L. MAP kinase-mediated signalling to nucleosomes and immediate-early gene induction. Semin. Cell Dev. Biol. 10, 205–214 (1999).

    CAS  Article  Google Scholar 

  36. 36

    Chadee,D. N. et al. Increased Ser-10 phosphorylation of histone H3 in mitogen-stimulated and oncogene-transformed mouse fibroblasts. J. Biol. Chem. 274, 24914–24920 (1999).

    CAS  Article  Google Scholar 

  37. 37

    Sassone-Corsi,P. et al. Requirement of Rsk-2 for epidermal growth factor-activated phosphorylation of histone H3. Science 285, 886–891 (1999).

    CAS  Article  Google Scholar 

  38. 38

    De Cesare,D., Jacquot,S., Hanauer,A. & Sassone-Corsi,P. Rsk-2 activity is necessary for epidermal growth factor-induced phosphorylation of CREB protein and transcription of c-fos gene. Proc. Natl Acad. Sci. USA 95, 12202–12207 (1998).

    ADS  CAS  Article  Google Scholar 

  39. 39

    Thomson,S. et al. The nucleosomal response associated with immediate-early gene induction is mediated via alternative MAP kinase cascades: MSK1 as a potential histone H3/HMG-14 kinase. EMBO J. 18, 4779–4793 (1999).

    CAS  Article  Google Scholar 

  40. 40

    Jin,Y. et al. JIL-1: a novel chromosomal tandem kinase implicated in transcriptional regulation in Drosophila. Mol. Cell 4, 129–135 (1999).

    CAS  Article  Google Scholar 

  41. 41

    Lucchesi,J. C. Dosage compensation in flies and worms: the ups and downs of X-chromosome regulation. Curr. Opin. Genet. Dev. 8, 179–184 (1998).

    CAS  Article  Google Scholar 

  42. 42

    Turner,B. M., Birley,A. J. & Lavender,J. Histone H4 isoforms acetylated at specific lysine residues define individual chromosomes and chromatin domains in Drosophila polytene nuclei. Cell 69, 375–384 (1992).

    CAS  Article  Google Scholar 

  43. 43

    von Holt,C. et al. Isolation and characterization of histones. Methods Enzymol. 170, 431–523 (1989).

    CAS  Article  Google Scholar 

  44. 44

    Strahl,B. D., Ohba,R., Cook,R. G. & Allis,C. D. Methylation of histone H3 at lysine 4 is highly conserved and correlates with transcriptionally active nuclei in Tetrahymena. Proc. Natl Acad. Sci. USA 96, 14967–14972 (1999).

    ADS  CAS  Article  Google Scholar 

  45. 45

    Chen,D. et al. Regulation of transcription by a protein methyltransferase. Science 284, 2174–2177 (1999).

    CAS  Article  Google Scholar 

  46. 46

    Nakajima,T. et al. The signal-dependent coactivator CBP is a nuclear target for pp90RSK. Cell 86, 465–474 (1996).

    CAS  Article  Google Scholar 

  47. 47

    Berger,S. L. Gene activation by histone and factor acetyltransferases. Curr. Opin. Cell Biol. 11, 336–341 (1999).

    CAS  Article  Google Scholar 

  48. 48

    Cosma,M. P., Tanaka,T. & Nasmyth,K. Ordered recruitment of transcription and chromatin remodeling factors to a cell cycle- and developmentally regulated promoter. Cell 97, 299–311 (1999).

    CAS  Article  Google Scholar 

  49. 49

    Krebs,J. E., Kuo,M. H., Allis,C. D. & Peterson,C. L. Cell cycle-regulated histone acetylation required for expression of the yeast HO gene. Genes Dev. 13, 1412–1421 (1999).

    CAS  Article  Google Scholar 

  50. 50

    Clark,D. et al. Chromatin structure of transcriptionally active genes. Cold Spring Harb. Symp. Quant. Biol. 58, 1–6 (1993).

    CAS  Article  Google Scholar 

  51. 51

    Roth,S. Y. & Allis,C. D. Chromatin condensation: does histone H1 dephosphorylation play a role? Trends Biochem. Sci. 17, 93–98 (1992).

    CAS  Article  Google Scholar 

  52. 52

    Barratt,M. J., Hazzalin,C. A., Cano,E. & Mahadevan,L. C. Mitogen-stimulated phosphorylation of histone H3 is targeted to a small hyperacetylation-sensitive fraction. Proc. Natl Acad. Sci. USA 91, 4781–4785 (1994).

    ADS  CAS  Article  Google Scholar 

  53. 53

    Hendzel,M. J. Mitosis-specific phosphorylation of histone H3 initiates primarily within pericentromeric heterochromatin during G2 and spreads in an ordered fashion coincident with mitotic chromosome condensation. Chromosoma 106, 348–360 (1997).

    CAS  Article  Google Scholar 

  54. 54

    Wei,Y., Yu,L., Bowen,J., Gorovsky,M. A. & Allis,C. D. Phosphorylation of histone H3 is required for proper chromosome condensation and segregation. Cell 97, 99–109 (1999).

    CAS  Article  Google Scholar 

  55. 55

    Goto,H. et al. Identification of a novel phosphorylation site on histone H3 coupled with mitotic chromosome condensation. J. Biol. Chem. 274, 25543–25549 (1999).

    CAS  Article  Google Scholar 

  56. 56

    Sullivan,K. F., Hechenberger,M. & Masri,K. Human CENP-A contains a histone H3 related histone fold domain that is required for targeting to the centromere. J. Cell Biol. 127, 581–592 (1994).

    CAS  Article  Google Scholar 

  57. 57

    Hirano,T. SMC-mediated chromosome mechanics: a conserved scheme from bacteria to vertebrates? Genes Dev. 13, 11–19 (1999).

    CAS  Article  Google Scholar 

  58. 58

    De Rubertis,F. et al. The histone deacetylase RPD3 counteracts genomic silencing in Drosophila and yeast. Nature 384, 589–591 (1996).

    ADS  CAS  Article  Google Scholar 

  59. 59

    Braunstein,M., Sobel,R. E., Allis,C. D., Turner,B. M. & Broach,J. R. Efficient transcriptional silencing in Saccharomyces cerevisiae requires a heterochromatin histone acetylation pattern. Mol. Cell. Biol. 16, 4349–4356 (1996).

    CAS  Article  Google Scholar 

  60. 60

    Dhalluin,C. et al. Structure and ligand of a histone acetyltransferase bromodomain. Nature 399, 491–496 (1999).

    ADS  CAS  Article  Google Scholar 

  61. 61

    Winston,F. & Allis,C. D. The bromodomain: a chromatin-targeting module? Nature Struct. Biol. 6, 601–604 (1999).

    CAS  Article  Google Scholar 

  62. 62

    Pawson,T. Protein modules and signalling networks. Nature 373, 573–580 (1995).

    ADS  CAS  Article  Google Scholar 

  63. 63

    Roberts,S. M. & Winston,F. Essential functional interactions of SAGA, a Saccharomyces cerevisiae complex of Spt, Ada, and Gcn5 proteins, with the Snf/Swi and Srb/mediator complexes. Genetics 147, 451–465 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. 64

    Biggar,S. R. & Crabtree,G. R. Continuous and widespread roles for the Swi–Snf complex in transcription. EMBO J. 18, 2254–2264 (1999).

    CAS  Article  Google Scholar 

  65. 65

    Sudarsanam,P., Cao,Y., Wu,L., Laurent,B. C. & Winston,F. The nucleosome remodeling complex, Snf/Swi, is required for the maintenance of transcription in vivo and is partially redundant with the histone acetyltransferase, Gcn5. EMBO J. 18, 3101–3106 (1999).

    CAS  Article  Google Scholar 

  66. 66

    Georgel,P. T., Tsukiyama,T. & Wu,C. Role of histone tails in nucleosome remodeling by Drosophila NURF. EMBO J. 16, 4717–4726 (1997).

    CAS  Article  Google Scholar 

  67. 67

    Luduena,R. F. Multiple forms of tubulin: different gene products and covalent modifications. Int. Rev. Cytol. 178, 207–275 (1998).

    CAS  Article  Google Scholar 

  68. 68

    Luduena,R. F., Banerjee,A. & Khan,I. A. Tubulin structure and biochemistry. Curr. Opin. Cell Biol. 4, 53–57 (1992).

    CAS  Article  Google Scholar 

  69. 69

    Nogales,E., Whittaker,M., Milligan,R. A. & Downing,K. H. High-resolution model of the microtubule. Cell 96, 79–88 (1999).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

Research surrounding this topic in our laboratory is supported by grants from the NIH to C.D.A. and B.D.S. We wish to thank current laboratory members, especially C. A. Mizzen, for critical review of this manuscript, and T. K. Archer and C. L. Smith for kindly sharing unpublished data.

Author information

Affiliations

Authors

Corresponding author

Correspondence to C. David Allis.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Strahl, B., Allis, C. The language of covalent histone modifications. Nature 403, 41–45 (2000). https://doi.org/10.1038/47412

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing