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Singularities are places where mathemat-
ical quantities become infinite, or
change abruptly. In waves — of light,

for example — there can be singularities in
the intensity, in the phase, or in the polariza-
tion. This is a modern view, sharply different
from the traditional approach where waves
were simply the solutions of wave equations,
and singularities — if considered at all —
were regarded as awkward places where the
usual treatments fail. And yet the foundations
of wave singularities were laid in three aston-
ishing papers published as early as the 1830s,
a decade whose intellectual significance we
are only now beginning to appreciate.

Reversing historical order, we start in
1838, with a paper by George Biddell Airy.
The immediate stimulus was the theory of
the rainbow. Two centuries earlier, Descartes
had understood the bright bow as Sun rays
directionally focused by raindrops. This geo-
metrical theory gives a good first approxima-
tion but fails to account for the delicate
supernumerary bows sometimes seen just
inside the main arc. In 1801 Thomas Young
realized that by regarding light as waves it is
possible to understand supernumaries as
interference fringes, but could not give a pre-
cise mathematical description. Airy’s contri-
butions were: to appreciate that the rainbow
is a particular example of a caustic, that is, a
line where light rays are focused (the bright
lines on the bottom of swimming pools are
also caustics); to see that caustics are singu-
larities, where ray optics predicts infinite
brightness; to realize that wave physics will
soften the singularities; and to discover the
precise mathematical description of this
softening, in the form of his rainbow integral
(pictured above).

Airy’s paper was doubly influential. First,
because refined techniques soon devised by
George Gabriel Stokes to study the rainbow
integral established divergent infinite series
as an important tool in bridging gaps
between physical theories (in this case ray and
wave optics) and uncovered a mathematical
phenomenon whose ramifications are still
being explored. Second, because the rainbow
integral, describing wave interference deco-
rating the simplest kind of caustic, was found
to be the first in a hierarchy of ‘diffraction cat-
astrophes’. These more elaborate wave singu-
larities are now classified using catastrophe
theory — mathematics whose application
greatly advances the physics of caustics. 

Next are two papers from 1833 and 1836
by the polymath William Whewell (to whom

we owe the word ‘physicist’, with its “four
sibilant consonants that fizz like a squib”).
He was studying the tides in the oceans, and
seeking to “connect the actual tides of all the
different parts of the world — and to account
for their varieties and seeming anomalies”.
From Young he learned to concentrate on the
cotidal lines connecting places where the tide
is high at a given time. Cotidal lines are wave-
fronts of the tide, regarded as a wave of
twelve-hour period; they are contours of the
phase of this wave. Whewell appreciated that
a map of cotidal lines would render intelligi-
ble the pattern of tides around the coasts, 
and coordinated hundreds of new obser-
vations, in an early international scientific 
collaboration. 

Extrapolating away from the coasts into
the ‘German Ocean’ he reached the extraordi-
nary conclusion that there must be “rotatory
systems of tide-waves [where] the cotidal lines
... revolve around [a point] where there is no
tide, for it is clear that at a point where all the
cotidal lines meet, it is high-water equally at 
all times”. One of Whewell’s ‘amphidromies’
can be seen above. What Whewell discovered
were the phase singularities of the tide waves.

Phase singularities are now recognized as
important features of all waves; in three
dimensions they are lines rather than points.
At a phase singularity, the wave intensity is
zero — in contrast to caustics where the
intensity is (geometrically) infinite. In acous-
tics, the singularities are threads of silence; in
light, they are optical vortices; in superfluids,
quantized vortices; and in superconductors,
quantized lines of magnetic flux.

In addition to intensity and phase, waves
of light exhibit polarization: they are vector
waves. Polarization has its singularities too,
discovered by our third author, William
Rowan Hamilton, in 1832, as an unexpected
consequence of Augustin Fresnel’s theory of
the optics of crystals. In a general anisotropic
material, two waves propagate in each direc-
tion, with different speeds and polarizations.
There are, however, two singular directions,
optic axes, where the speeds are the same. As
functions of direction, the two speeds can be
represented by surfaces forming a diabolo
(double cone) at each optic axis. Hamilton
deduced that at such ‘diabolical points’ the
wave direction corresponds to a cone of rays.
This unprecedented ‘conical refraction’ was
soon observed, confirming that light is a
transverse wave. Diabolical points can easily
be seen directly (pictured above).

Hamilton’s diabolical point was the first
physical example of degeneracy between
eigenvalues of a real symmetric matrix. Its
descendants thrive in many areas of science
today, for example, as conical intersections
between energy levels in quantum chem-
istry, as Bloch wave degeneracies in the
quantum Hall effect, and as the simplest
geometric phases. n
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Airy’s rainbow integral.

Whewell’s amphidromy between England and
Holland.

Hamilton’s diabolical points (bullseyes) in
several square centimetres of overhead-projector
transparency foil viewed obliquely through
crossed polarizers; in each bullseye, the
interference rings are contours of difference of
wave speeds, centred on an optic axis, and the
black stripes reflect geometric phases.
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