Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Seismic anisotropy of the Earth's inner core resulting from flow induced by Maxwell stresses

Abstract

Seismological observations indicate that the inner core of the Earth is elastically anisotropic1. Anisotropic structures are likely to be formed by dynamic processes and therefore such observations have the potential to provide constraints on flow in the inner core and on the geodynamo itself. But in addition to the difficulties in estimating the relevant physical properties of iron under inner-core conditions2,3,4, even the macroscopic processes responsible for generating seismic anisotropy in this region have yet to be determined5,6,7,8,9. As a result, the geodynamic significance of seismic anisotropy in the inner core has remained unknown. Here I propose—based on geodynamic and mineral physics considerations—that flow induced by the stress due to the magnetic field, the Maxwell stress, near the inner-core boundary produces an axisymmetric fabric responsible for the observed seismic anisotropy. The resultant seismic anisotropy reflects the geometry of the magnetic field near the inner-core boundary and therefore seismological observations might provide constraints on the geodynamo. This flow also causes non-uniform release of energy at the inner-core boundary, associated with solidification and melting which may affect the pattern of convection in the outer core.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A schematic diagram showing the structure and dynamics of the inner core.
Figure 2: Flow field caused by the magnetic field at the boundary between the inner and the outer core.

Similar content being viewed by others

References

  1. Song,X. D. Anisotropy of the Earth's inner core. Rev. Geophys. 35, 297–313 (1997).

    Article  ADS  Google Scholar 

  2. Stixrude,L. & Cohen,R. E. High-pressure elasticity of iron and anisotropy of Earth's inner core. Science 267, 1972–1975 (1995).

    Article  ADS  CAS  Google Scholar 

  3. Singh,A. K., Mao,H-K., Shu,J. & Hemley,R. J. Estimation of single-crystal moduli from X-ray diffraction at high pressure: application to FeO and iron. Phys. Rev. Lett. 80, 2157–2160 (1998).

    Article  ADS  CAS  Google Scholar 

  4. Poirier,J-P. & Price,G. D. Primary slip system of ε-iron and anisotropy of the Earth's inner core. Phys. Planet. Inter. 110, 147–156 (1999).

    Article  ADS  CAS  Google Scholar 

  5. Jeanloz,R. & Wenk,H-R. Convection and anisotropy of the inner core. Geophys. Res. Lett. 15, 72–75 (1988).

    Article  ADS  Google Scholar 

  6. Karato,S. Inner core anisotropy due to magnetic field-induced preferred orientation of iron. Science 262, 1708–1711 (1993).

    Article  ADS  CAS  Google Scholar 

  7. Bergman,M. I. Measurements of elastic anisotropy due to solidification texturing and the implications for the Earth's inner core. Nature 389, 60–63 (1997).

    Article  ADS  CAS  Google Scholar 

  8. Buffett,B. A. & Creager,K. C. Rotation and deformation of the inner core. Eos 79, S218–S219 (1998).

    Article  Google Scholar 

  9. Yoshida,S., Sumita,I. & Kumazawa,M. Growth model of the inner core coupled with outer core dynamics and the resultant elastic anisotropy. J. Geophys. Res. 101, 28085–28103 (1996).

    Article  ADS  CAS  Google Scholar 

  10. Song,X. D. & Richards,P. G. Seismological evidence for the rotation of the Earth's inner core. Nature 382, 221–224 (1996).

    Article  ADS  CAS  Google Scholar 

  11. Su,W. J., Dziewonski,A. M. & Jeanloz,R. Planet within a planet: rotation of the inner core of Earth. Science 274, 1883–1887 (1996).

    Article  ADS  CAS  Google Scholar 

  12. Glatzmaier,G. A. & Roberts,P. H. Rotation and magnetism of the Earth's inner core. Science 274, 1887–1891 (1996).

    Article  ADS  CAS  Google Scholar 

  13. Aurnou,J., Brito,D. & Olson,P. Anomalous rotation of the inner core and the toroidal magnetic field. J. Geophys. Res. 103, 9721–9738 (1998).

    Article  ADS  Google Scholar 

  14. Sumita,I., Yoshida,S., Kumazawa,M. & Hamano,Y. A model for sedimentary compaction of a viscous medium and its application to inner-core growth. Geophys. J. Int. 124, 502–524 (1996).

    Article  ADS  Google Scholar 

  15. Baumgardner,J. R., Tome,C. N., Lebensohn,R. & Wenk,H-R. Inner core anisotropy: texture as an alternative to a single crystal. Eos 78, F458 (1997).

    Google Scholar 

  16. Yukutake,T. Implausibility of thermal convection in the Earth's solid inner core. Phys. Earth Planet. Inter. 108, 1–13 (1998).

    Article  ADS  CAS  Google Scholar 

  17. Buffett,B. A. in Mineral Physics and Seismic Tomography (eds Karato, S. et al.) (American Geophysical Union, Washington DC, in the press).

  18. Frost,H. J. & Ashby,M. F. Deformation Mechanism Maps (Pergamon, Oxford, 1982).

    Google Scholar 

  19. Buffett,B. A. Geodynamic estimates of the viscosity of the Earth's inner core. Nature 388, 571–573 (1997).

    Article  ADS  CAS  Google Scholar 

  20. Chandrasekhar,S. Hydrodynamic and Hydromagnetic Stability (Oxford Univ. Press, 1961).

    MATH  Google Scholar 

  21. Glatzmaier,G. A. & Roberts,P. H. A three-dimensional convective dynamo solution with rotating and finally conducting inner core and mantle. Phys. Earth Planet. Inter. 91, 63–75 (1995).

    Article  ADS  Google Scholar 

  22. Kageyama,A. & Sato,T. Generation mechanism of a dipole field by a magnetohydrodynamic dynamo. Phys. Rev. E 55, 4617–4626 (1997).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  23. Merrill,R. T., McElhinney,M. W. & McFaddon,P. L. The Magnetic Field of the Earth (Academic, San Diego, 1998).

    Google Scholar 

  24. Olson,P. & Glatzmaier,G. A. Magnetoconvection in a rotating spherical shell: structure of flow in the outer core. Phys. Earth Planet. Inter. 92, 109–118 (1995).

    Article  ADS  Google Scholar 

  25. Olson,P., Christensen,U. & Glatzmaier,G. A. Numerical modeling of the geodynamo: Mechanisms of field generation and equilibration. J. Geophys. Res. 104, 10383–10404 (1999).

    Article  ADS  Google Scholar 

  26. Yoo,C. S., Akella,J., Campbell,A. J., Mao,H.-K. & Hemley,R. J. Phase diagram of iron by in-situ X-ray diffraction: implications for Earth's core. Science 270, 1473–1475 (1995).

    Article  ADS  CAS  Google Scholar 

  27. Olson,P. & Glatzmaier,G. A. Magnetoconvection and thermal coupling of the Earth's core and mantle. Phil. Trans. R. Soc. Lond. A 354, 1413–1424 (1996).

    Article  ADS  Google Scholar 

  28. Song,X. & Helmberger,D. V. Seismic evidence for an inner core transition zone. Science 282, 924–927 (1998).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

I thank Y. Abe, S. Banerjee, M. Bergman, J. Bloxham, B. Buffett, F. Busse, R. Coe, K. Creager, D. Gubbins, R. Merrill, F. Stacey and D. Stevenson for discussions. This work was supported by Alexander von Humboldt Stiftung.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shun-ichiro Karato.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karato, Si. Seismic anisotropy of the Earth's inner core resulting from flow induced by Maxwell stresses. Nature 402, 871–873 (1999). https://doi.org/10.1038/47235

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/47235

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing