Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Ascaris haemoglobin is a nitric oxide-activated ‘deoxygenase’

Abstract

The parasitic nematode Ascaris lumbricoides infects one billion people worldwide. Its perienteric fluid contains an octameric haemoglobin1,2,3 that binds oxygen nearly 25,000 times more tightly than does human haemoglobin4,5. Despite numerous investigations, the biological function of this molecule has remained elusive. The distal haem pocket contains a metal, oxygen and thiol6, all of which are known to be reactive with nitric oxide. Here we show that Ascaris haemoglobin enzymatically consumes oxygen in a reaction driven by nitric oxide, thus keeping the perienteric fluid hypoxic. The mechanism of this reaction involves unprecedented chemistry of a haem group, a thiol and nitric oxide. We propose that Ascaris haemoglobin functions as a ‘deoxygenase’, using nitric oxide to detoxify oxygen. The structural and functional adaptations of Ascaris haemoglobin suggest that the molecular evolution of haemoglobin can be rationalized by its nitric oxide related functions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Interaction of native Ascaris haemoglobin (AH) with NO.
Figure 2: Consumption of NO by Ascaris haemoglobin.
Figure 3: Oxygen consumption by Ascaris haemoglobin.
Figure 4: Analyses of fresh Ascaris worms and related evolutionary implications.

Similar content being viewed by others

References

  1. Darawshe,S., Tsafadyah,Y. & Daniel, E. Quartenary structure of erythrocruorin from the nematode Ascaris suum. Biochem. J. 242, 689– 694 (1987).

    Article  CAS  Google Scholar 

  2. De Baere,I. et al. Polar zipper sequence in the high-affinity hemoglobin of Ascaris suum: amino acid sequence and structural interpretation. Proc. Natl Acad. Sci. USA 89, 4638– 4642 (1992).

    Article  ADS  CAS  Google Scholar 

  3. Sherman,D. R., Kloek,A. P., Krishnan,B. R., Guinn,B. & Goldberg,D. E. Ascaris hemoglobin gene: Plant-like structure reflects the ancestral globin gene. Proc. Natl Acad. Sci. USA 89, 11696–11700 (1992).

    Article  ADS  CAS  Google Scholar 

  4. Davenport,H. E. The haemoglobins of Ascaris lumbricoides. Proc. R. Soc. Lond. B 136, 255–270 ( 1949).

    Article  ADS  CAS  Google Scholar 

  5. Okazaki,T. & Wittenberg,J. B. The hemoglobin of Ascaris perienteric fluid. III. Equilibria with oxygen and carbon monoxide. Biochim. Biophys. Acta 111, 503–511 (1965).

    Article  CAS  Google Scholar 

  6. Yang,J., Kloek,A. P., Goldberg,D. E. & Mathews,F. S. The structure of Ascaris hemoglobin domain I at 2.2 A resolution: Molecular features of oxygen avidity. Proc. Natl Acad. Sci. USA 92, 4224–4228 ( 1995).

    Article  ADS  CAS  Google Scholar 

  7. Gow,A. J., Luchsinger,B. P., Pawloski, J. P., Singel,D. J. & Stamler,J. S. The oxyhemoglobin reaction of nitric oxide. Proc. Natl Acad. Sci. USA 96, 9027–9032 (1999).

    Article  ADS  CAS  Google Scholar 

  8. Bascal,Z. A., Montgomery,A., Holden-Dye, L., Williams,R. G. & Walker,R. J. Histochemical mapping of NADPH diaphorase in the nervous system of the parasitic nematode Ascaris suum . J. Neurophysiol. 74, 1880– 1888 (1995).

    Article  Google Scholar 

  9. Bowman,J. W. et al. Nitric oxide mediates the inhibitory effects of SDPNFLRFamide, a nematode FMRFamide-related neuropeptide, in Ascaris suum. J. Neurophysiol. 74, 1880–1888 (1995).

    Article  CAS  Google Scholar 

  10. Green,L. C. et al. Analysis of nitrate, nitrite, and [15N]nitrate in biological fluids. Anal. Biochem. 126, 131– 138 (1982).

    Article  CAS  Google Scholar 

  11. Sharma,V. S., Traylor,T. G., Gardiner,R. & Mizukami,H. Reaction of nitric oxide with heme proteins and model compounds of hemoglobin. Biochemistry 26, 3837– 3843 (1987).

    Article  CAS  Google Scholar 

  12. Gow, A J. & Stamler,J. S. Reactions between nitric oxide and haemoglobin under physiological conditions. Nature 391, 169–173 (1998).

    Article  ADS  Google Scholar 

  13. Jia,L., Bonaventura,C., Bonaventura, J. & Stamler,J. S. S-nitrosohaemoglobin: a dynamic activity of blood involved in vascular control. Nature 380, 221–226 (1996).

    Article  ADS  CAS  Google Scholar 

  14. Stamler,J. S. et al. Blood flow regulation by S-nitrosohemoglobin in the physiological oxygen gradient. Science 276, 2034– 2037 (1997).

    Article  CAS  Google Scholar 

  15. Sherman,D. R., Guinn,B., Perdok,M. M. & Goldberg,D. E. Components of sterol biosynthesis assembled on the oxygen-avid hemoglobin of Ascaris . Science 258, 1930– 1932 (1992).

    Article  ADS  CAS  Google Scholar 

  16. Nagashima,S. et al. Novel non-heme iron center of nitrile hydratase with a claw setting of oxygen atoms. Nature Struct. Biol. 5, 347–351 (1998).

    Article  CAS  Google Scholar 

  17. Hausladen,A., Gow,A. J. & Stamler,J. S. Nitrosative stress: metabolic pathway involving the flavohemoglobin. Proc. Natl Acad. Sci. USA 95, 14100–14105 (1998).

    Article  ADS  CAS  Google Scholar 

  18. Landino,L. M., Crews,B. C., Timmons,M. D., Morrow,J. D. & Marnett,L. J. Peroxynitrite, the coupling product of nitric oxide and superoxide, activates prostoaglandin biosynthesis. Proc. Natl Acad. Sci. USA 93, 15069– 15074 (1996).

    Article  ADS  CAS  Google Scholar 

  19. Balagopalakrishna,C. et al. Superoxide produced in the heme pocket of the beta-chain of hemoglobin reacts with the beta-93 cysteine to produce a thiyl radical. Biochemistry 37, 13194–13202 (1998).

    Article  CAS  Google Scholar 

  20. Peterson,E. S. et al. A comparison of functional and structural consequences of the tyrosine B10 and flutamine E7 motifs in two invertebrate hemoglobins ( Ascaris suum and Lucina pectinata). Biochemistry 36, 13110–13121 (1997).

    Article  CAS  Google Scholar 

  21. Balagopalakrishna,C., Manoharan,P. T., Abugo,O. O. & Rifkind,J. M. Production of superoxide from hemoglobin-bound oxygen under hypoxic conditions. Biochemistry 35, 6393– 6398 (1996).

    Article  CAS  Google Scholar 

  22. De Baere,I., Perutz,M. F., Kiger,L., Marden,M. C. & Poyart, C. Formation of two hydrogen bonds from the globin to the heme-linked oxygen molecule in Ascaris hemoglobin. Proc. Natl Acad. Sci. USA 91, 1594–1597 (1994).

    Article  ADS  CAS  Google Scholar 

  23. Kloek,A. P., Yang,J. Mathews,F. S., Frieden,C. & Goldberg, D. E. The tyrosine B10 hydroxyl is crucial for oxygen avidity of Ascaris hemoglobin. J. Biol. Chem. 269, 2377–2379 (1994).

    CAS  PubMed  Google Scholar 

  24. Maccarrone,M., Putti,S. & Finazzi,A. A. Nitric oxide donors activate the cyclo-oxygenase and peroxidase activities of prostaglandin H synthase. FEBS Lett. 410, 470–476 (1997).

    Article  CAS  Google Scholar 

  25. Blaxter,M. L. Nemoglobins: divergent nematode hemoglobins. Parasitol. Today 9, 353–360 (1993).

    Article  CAS  Google Scholar 

  26. Hardison,R. Hemoglobins from bacteria to man: evolution of different patterns of gene expression. J. Exp. Biol. 201, 1099– 1117 (1998).

    CAS  PubMed  Google Scholar 

  27. Crawford,M. J. & Goldberg,D. E. Role for the Salmonella flavohemoglobin in protection from nitric oxide. J. Biol. Chem. 273, 12543–12547 (1998).

    Article  CAS  Google Scholar 

  28. Gardner,P. R., Gardner,A. M., Martin,L. A. & Salzman,A. L. Nitric oxide dioxygenase: An enzymatic fucntion for flavohemoglobin. Proc. Natl Acad. Sci. USA 95, 10378– 10383 (1998).

    Article  ADS  CAS  Google Scholar 

  29. Kloek,A. P., Yang,J., Matthews,F. S. & Goldberg,D. E. Expression, characterization, and crystallization of oxygen-avid Ascaris hemoglobin domains. J. Biol. Chem. 268, 17669– 17671 (1993).

    CAS  PubMed  Google Scholar 

  30. Young,W. K., Vojnovic,B. & Wardman, P. Measurement of oxygen tension in tumours by time-resolved fluorescence. Br. J. Cancer 74, S256– S259 (1996).

    Google Scholar 

Download references

Acknowledgements

We thank I. Fridovich, A. Hausladen, J. Lanzen and D. Hess for assistance and discussion. This work was supported by the NIH and the ALS association. D.E.G. is the recipient of a Burroughs Wellcome Fund scholar award in molecular parasitology.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Minning, D., Gow, A., Bonaventura, J. et al. Ascaris haemoglobin is a nitric oxide-activated ‘deoxygenase’ . Nature 401, 497–502 (1999). https://doi.org/10.1038/46822

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/46822

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing