Abstract
Insect metamorphosis is a fascinating and highly successful biological adaptation, but there is much uncertainty as to how it evolved. Ancestral insect species did not undergo metamorphosis and there are still some existing species that lack metamorphosis or undergo only partial metamorphosis. Based on endocrine studies and morphological comparisons of the development of insect species with and without metamorphosis, a novel hypothesis for the evolution of metamorphosis is proposed. Changes in the endocrinology of development are central to this hypothesis. The three stages of the ancestral insect species—pronymph, nymph and adult—are proposed to be equivalent to the larva, pupa and adult stages of insects with complete metamorphosis. This proposal has general implications for insect developmental biology.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Effects of heat tolerance on the gut microbiota of Sarcophaga peregrina (Diptera: Sarcophagidae) and impacts on the life history traits
Parasites & Vectors Open Access 17 October 2023
-
Metamorphic aerial robot capable of mid-air shape morphing for rapid perching
Scientific Reports Open Access 23 January 2023
-
Recapitulation of the embryonic transcriptional program in holometabolous insect pupae
Scientific Reports Open Access 20 October 2022
Access options
Subscribe to this journal
Receive 51 print issues and online access
$199.00 per year
only $3.90 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout





References
Carpenter,F. M. in Treatise on Invertebrate Paleontology. Part R, Arthropoda 4 Vol. 3 Superclass Hexapoda 1–277 (Geological Soc. Am., Boulder, Colorado, 1992).
Kukalova-Peck,J. Origin and evolution of insect wings and their relation to metamorphosis, as documented by the fossil record. J. Morphol. 156 , 53–126 (1978).
Kristensen,N. P. The phylogeny of hexapod “orders”. A critical review of recent accounts. Z. Zool. Systematic Evolutionsforschung 13 , 1–44 (1975).
Berlese,A. Intorno alle metamorfosi degli insetti. Redia 9, 121–136 (1913).
Poyarkoff,E. Essai d'une théorie de la nymphe des Insectes Holométaboles. Arch. Zool. Exp. Gen. 54, 221–265 (1914).
Hinton,H. E. On the origin and function of the pupal stage. Trans. R. Entomol. Soc. Lond. 99, 395–409 ( 1948).
Hinton,H. E. Biology of Insect Eggs Vol. 1 (Pergamon, Oxford, 1981).
Hinton,H. E. On the structure, function, and distribution of the prolegs of the Panorpoidea with a criticism of the Berlese–Imms theory. Trans. R. Entomol. Soc. Lond. 106, 455–545 (1955).
Sehnal,F. in Comprehensive Insect Physiology, Biochemistry, and Pharmacology Vol. 2 (eds Kerkut, G. A. & Gilbert, L. I.) 1– 86 (Pergamon, Oxford, 1985).
Sehnal,F., Svácha,P. & Zrzavy,J. in Metamorphosis: Postembryonic Reprogramming of Gene Expression in Amphibian and Insect Cells (eds Gilbert, L. I., Tata, J. R. & Atkinson, B. G.) 3–58 (Academic, San Diego, 1996).
Novak,V. J. A. Insect Hormones 2nd English edn (Chapman and Hall, London, 1975).
van der Hammen,L. An Introduction to Comparative Arachnology (SPB, The Hague, 1989).
Heeley,W. Observations of the life-histories of some terrestrial isopods. Proc. Zool. Soc. Lond. 111, 79–149 (1941).
Lindsay,E. The biology of the silverfish, Ctenolepisma longicaudata Esch. with particular reference to its feeding habits. Proc. R. Soc. Victoria 52, 35–83 ( 1940).
Bernays,E. A. The vermiform larva of Schistocerca gregaria (Forskål): Form and activity (Insecta, Orthoptera). Z. Morph. Tiere. 70, 183–200 (1971).
Sbrenna,G. in Morphogenetic Hormones of Arthropods Vol. 3 (ed. Gupta, A. P.) 44–80 (Rutgers Univ. Press, New Brunswick, New Jersey, 1991).
Sbrenna-Micciarelli,A. & Sbrenna,G. The embryonic apolyses of Schistocerca gregaria (Orthoptera). J. Insect Physiol. 18, 1027–1037 ( 1972).
Edwards,J. S. & Chen, S.-W. Embryonic development of an insect sensory system, the abdominal cerci of Acheta domesticus. Wilhelm Roux Arch. Dev. Biol. 186, 151–178 (1979).
Dorn,A. & Hoffmann,P. The ‘embryonic moults’ of the milkweed bug as seen by the S.E.M. Tiss. Cell 13, 461–473 (1981).
Heming,B. S. Structure and development of larval antennae in embryos of Lytta viridana LeConte (Coleoptera: Meloidae). Can. J. Zool. 74, 1008–1034 (1996).
Campos-Ortega,J. A. & Hartenstein,V. The Embryonic Development of Drosophila melanogaster (Springer, Berlin, 1985).
Broadie,K. S., Bate,M. & Tublitz,N. J. Quantitative staging of embryonic development of the tobacco hawkmoth, Manduca sexta. Wilhelm Roux Arch. Dev. Biol. 199, 327–334 (1991).
Meier,T., Chabaud,F. & Reichert, H. Homologous patterns in the embryonic development of the peripheral nervous system in the grasshopper Schistocerca gregaria and the fly Drosophila melanogaster. Development 112, 241–253 (1991).
Bate,C. M. Pioneer neurones in an insect embryo. Nature 260, 54–56 (1976).
Grueber,W. B. & Truman,J. W. Identification and development of a nitric oxide-sensitive peripheral plexus in larvae of the moth, Manduca sexta. J. Comp. Neurol. 404, 127– 141 (1999).
Kutsch,W. & Bentley,D. Programmed death of peripheral pioneer neurons in the grasshopper embryo. Dev. Biol. 123, 517–525 (1987).
Zacharuk,R. Y. & Shields,V. D. Sensilla of immature insects. Annu. Rev. Entomol. 36, 331–354 (1991).
Nijhout,H. F. Insect Hormones (Princeton Univ. Press, Princeton, New Jersey, 1994).
Riddiford,L. M. Cellular and molecular actions of juvenile hormone. I. General considerations and premetamorphic actions. Adv. Insect Physiol. 24 , 213–274 (1994).
Lagueux,M., Hetru,H., Goltzené,F., Kappler,C. & Hoffmann, J. A. Ecdysone titre and metabolism in relation to cuticulogenesis in embryos of Locusta migratoria. J. Insect Physiol. 25, 709–725 (1979).
Temin,G., Zander,M. & Roussel,J. P. Physico-chemical (GC-MS) measurements of juvenile hormone III titres during embryogenesis of Locusta migratoria. Int. J. Invert. Reprod. 9, 105–112 (1986).
Imboden,H., Lanzrein,B., Delbecque,J. P. & Lüscher,M. Ecdysteroids and juvenile hormone during embryogenesis in the ovoviviparous cockroach Nauphoeta cinerea. Gen. Comp. Endocrinol. 36, 628–635 (1978).
Dorn,A. Hormones during embryogenesis of the milkweed bug, Oncopeltus fasciatus (Heteroptera: Lygaeidae). Entomol. Gen. 8, 193– 214 (1983).
Novák,V. J. A. Morphological analysis of the effects of juvenile hormone analogues and other morphologically active substances on embryos of Schistocerca gregaria Forsk. J. Embryol. Exp. Morphol. 21, 1– 21 (1969).
Sbrenna-Micciarelli,A. Effects of farnesyl methyl ether on embryos of Schistocerca gregaria (Orthoptera). Acta Embryol. Morphol. Exp. 3, 295–303 (1977).
Brüning,E., Saxer,A. & Lanzrein,B. Methyl farnesoate and juvenile hormone III in normal and precocene-treated embryos of the ovoviviparous cockroach Nauphoeta cinerea . Int. J. Invert. Reprod. Dev. 8, 269 –278 (1985).
Bergot,B. J., Baker,F. C., Cerf,D. C., Jamieson,G. & Schooley, D. A. in Juvenile Hormone Biochemistry (eds Pratt, G. E. & Brooks, G. T.) 33–45 (Elsevier, Amsterdam, 1981).
Riddiford,L. M. in Insect Juvenile Hormones, Chemistry and Action (eds Menn, J. J. & Beroza, M.) 95–111 (Academic, New York, 1972).
Riddiford,L. M. & Williams,C. M. The effects of juvenile hormone on the embryonic development of silkworms. Proc. Natl Acad. Sci. USA 57, 595– 601 (1967).
Smith,R. F. & Arking,R. The effects of juvenile hormone analogues on the embryogenesis of Drosophila melanogaster. J. Insect Physiol. 21, 723–732 ( 1975).
Oberlander,H. in Comprehensive Insect Physiology, Biochemistry, and Pharmacology Vol. 2 (eds Kerkut, G. A. & Gilbert, L. I.) 151– 182 (Pergamon, Oxford, 1985).
Kurushima,M. & Ohtaki,T. Relation between cell number and pupal development of wing disks in Bombyx mori. J. Insect Physiol. 21, 1705–1712 ( 1975).
Kremen,C. & Nijhout,H. F. Control of pupal commitment in the imaginal disks of Precis coenia (Lepidoptera: Nymphalidae). J. Insect Physiol. 44, 287–298.
Svácha,P. What are and what are not imaginal discs: reevaluation of some basic concepts (Insecta, Holometabola). Dev. Biol. 154, 101–117 (1992).
Quennedey,A. & Quennedey,B. Morphogenesis of the wing anlagen in the mealworm beetle Tenebrio molitor during the last larval instar. Tiss. Cell 22, 721–740 (1990).
Monsma,S. A. & Booker,R. Genesis of the adult retina and outer optic lobes of the moth, Manduca sexta. I. Patterns of proliferation and cell death. J. Comp. Neurol. 367, 10 –20 (1996).
Champlin,D. T. & Truman,J. W. Ecdysteroids govern two phases of eye development during metamorphosis of the moth, Manduca sexta. Development 125, 2009 –2018 (1998).
Reddy,G., McCaleb,D. C. & Kumaran, A. K. Tissue distribution of juvenile hormone hydrolytic activity in Galleria mellonella larvae. Experientia 36, 461–462 (1980).
Tower,W. L. The origin and development of the wings of Coleoptera. Zool. Jahrb. 17, 515–572 ( 1903).
Carroll,S. B. Homeotic genes and the evolution of arthropods and chordates. Nature 376, 479–485 ( 1995).
Couso,J. P. & Bishop,S. A. Proximal–distal development in the legs of Drosophila. Int. J. Dev. Biol. 42, 345–352 (1998).
Rohdendorf,E. B. & Sehnal,F. Inhibition of reproduction and embryogenesis in the firebrat, Thermobia domestica. J. Insect Physiol. 19, 37–56 (1973).
Watson,J. A. L. The growth and activity of the corpora allata in the larval firebrat, Thermobia domestica (Packard) (Thysanura, Lepismatidae). Biol. Bull. 132, 277–291 ( 1967).
Durston,A. J., van der Wees,J., Pijnappel, W. W. M. & Godsave,S. F. Retinoids and related signals in early development of the vertebrate central nervous system. Curr. Top. Dev. Biol. 40, 111–175 (1998).
Needham,J. G., Traver,J. R. & Hsu, Y.-C. The Biology of Mayflies (Comstock, Ithaca, New York, 1935).
Asahina,S. A Morphological Study of a Relic Dragonfly Epiophlebia superstes Selys (Odonata, Anisozygoptera) (Japan Soc. Promotion Sci., Tokyo, 1954).
Vaught,G. L. & Stewart,K. W. The life history and ecology of the stonefly, Neoperla clymene (Newman) (Plecoptera: Perlidae). Ann. Entomol. Soc. Am. 67, 167–178 (1974).
Corbert,P. S. The immature stages of the emperor dragonfly, Anax imperator Leach (Odonata: Aeshnidae). Entomol. Gazet. 6, 189–197 (1955).
Azam,K. M. & Anderson,N. H. Life history and habits of Sialis rotunda and S. californica in Western Oregon. Ann. Entomol. Soc. Am. 62, 549–558 (1969).
Riddiford,L. M. & Truman,J. W. in Insect Biochemistry (ed. Rockstein, M.) 307–357 (Academic, New York, 1978).
Bollenbacher,W. E., Smith,S. L., Goodman,W. & Gilbert,L. I. Ecdysteroid titer during the larval–pupal–adult development of the tobacco hornworm, Manduca sexta. Gen. Comp. Endocrinol. 44, 302–306 (1981).
Baker,F. C., Tsai,L. W., Reuter,C. C. & Schooley,D. A. In vivo fluctuation of JH, JH acid, and ecdysteroid titer, and JH esterase activity during development of fifth stadium Manduca sexta. Insect Biochem. 17, 989–996 ( 1987).
Fain,M. J. & Riddiford,L. M. Juvenile hormone titers in the hemolymph during later larval development of the tobacco hornworm, Manduca sexta (L.). Biol. Bull. 149, 506– 521 (1975).
Whiting,M. F., Carpenter,J. C., Wheeler, Q. D. & Wheeler,W. C. The strepsiptera problem: phylogeny of the holometabolous insect orders inferred from 18S and 28S ribosomal DNA sequences and morphology. Syst. Biol. 46, 1–68 ( 1997).
Lawrence,J. F. & Newton,A. F. Evolution and classification of beetles. Annu. Rev. Ecol. Syst. 13 , 261–290 (1982).
Powell,P. B. The development of the wings of certain beetles, and some studies of the origin of the wings of insects. J. N.Y. Entomol. Soc. 12, 237–243; 13, 5–22 (1904, 1905).
Tiegs,O. W. Researches on the insect metamorphosis. I. On the structure and post-embryonic development of a chalcid wasp, Nasonia. Trans. R. Soc. South Australia 46, 319–527 ( 1922).
Dewitz,H. Beiträge zur postembryonalen Gliedmassenbildung bei den Insecten. Z. Wiss. Zool. 30, 78–105 (1878).
Karawaiew,W. Die nachembryonale Entwicklung von Lasius flavus. Z. Wiss. Zool. 64, 385–478 ( 1898).
Meyer,D. R., Sachs,F. N. & Rohner, R. M. Parameters for growth of the imaginal wing disk in last instar larvae of Galleria mellonella L. J. Exp. Zool. 213, 185–197 ( 1980).
Williams,C. M. in Insect Biology in the Future (eds Locke, M. & Smith, D. S.) 369–384 (Academic, New York, 1980).
Mercer,W. F. The development of the wings in the Lepidoptera. New York Entomol. Soc. 8, 1–20 ( 1900).
Weismann,A. Die metamorphose von Corethra plumicornis. Z. Wiss. Zool. 16, 1–83 (1866 ).
Neumann,D. & Spindler, K.-D. Circasemilunar control of imaginal disc development in Clunio marinus: Temporal switching point, temperature-compensated developmental time and ecdysteroid profile. J. Insect Physiol. 37, 101–109 ( 1991).
Bryant,P. J. Cell lineage relationships in the imaginal wing disc of Drosophila melanogaster . Dev. Biol. 22, 389– 411 (1970).
Weismann,A. Die nachembryonale Entwicklung der Musciden nach Beobachtungen an Musca vomitoria und Sarcophaga carnaria. Z. Wiss. Zool. 14, 101–263 (1864).
Pratt,H. S. Imaginal discs in insects. Psyche 8, 15– 30 (1897).
Acknowledgements
We thank E. Ball for use of facilities at the Australian National University during the experimental phase of this study and for extensive comments on the manuscript. We also thank J. Edwards, J. Kingsolver, L. Nagy and D. Erezyilmaz for comments on drafts of this paper. This article is dedicated to the late G. B. Craig Jr, an inspirational force in the research and teaching of entomology.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Truman, J., Riddiford, L. The origins of insect metamorphosis. Nature 401, 447–452 (1999). https://doi.org/10.1038/46737
Issue Date:
DOI: https://doi.org/10.1038/46737
This article is cited by
-
Effects of heat tolerance on the gut microbiota of Sarcophaga peregrina (Diptera: Sarcophagidae) and impacts on the life history traits
Parasites & Vectors (2023)
-
Metamorphic aerial robot capable of mid-air shape morphing for rapid perching
Scientific Reports (2023)
-
The larval midgut of Anopheles, Aedes, and Toxorhynchites mosquitoes (Diptera, Culicidae): a comparative approach in morphophysiology and evolution
Cell and Tissue Research (2023)
-
Recapitulation of the embryonic transcriptional program in holometabolous insect pupae
Scientific Reports (2022)
-
Toxicity effect of the edible pigment carmoisine on Polyrhachis vicina Roger (Hymenoptera: Formicidae)
Ecotoxicology (2022)
Comments
By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.