Letter | Published:

LTP promotes formation of multiple spine synapses between a single axon terminal and a dendrite

Nature volume 402, pages 421425 (25 November 1999) | Download Citation

Subjects

Abstract

Structural remodelling of synapses1,2,3,4 and formation of new synaptic contacts5,6,7,8 has been postulated as a possible mechanism underlying the late phase of long-term potentiation (LTP), a form of plasticity which is involved in learning and memory9. Here we use electron microscopy to analyse the morphology of synapses activated by high-frequency stimulation and identified by accumulated calcium in dendritic spines. LTP induction resulted in a sequence of morphological changes consisting of a transient remodelling of the postsynaptic membrane followed by a marked increase in the proportion of axon terminals contacting two or more dendritic spines. Three-dimensional reconstruction revealed that these spines arose from the same dendrite. As pharmacological blockade of LTP prevented these morphological changes, we conclude that LTP is associated with the formation of new, mature and probably functional synapses contacting the same presynaptic terminal and thereby duplicating activated synapses.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    & Contributions of dendritic spines and perforated synapses to synaptic plasticity. Brain Res. Brain Res. Rev. 15, 215–249 (1990).

  2. 2.

    , & Induction of long-term potentiation is associated with an increase in the number of axospinous synapses with segmented postsynaptic densities. Brain Res. 566, 77–88 (1991).

  3. 3.

    et al. Structural synaptic correlate of long-term potentiation: formation of axospinous synapses with multiple, completely partitioned transmission zones. Hippocampus 3, 435–445 (1993).

  4. 4.

    & Induction of long-term potentiation is associated with major ultrastructural changes of activated synapses. Proc. Natl Acad. Sci. USA 93, 8040–8045 (1996).

  5. 5.

    , , , & Synapse restructuring associated with the maintenance phase of hippocampal long-term potentiation. J. Comp. Neurol. 368, 413–423 (1996).

  6. 6.

    , , & Recruitment of new sites of synaptic transmission during the cAMP-dependent late phase of LTP at CA3-CA1 synapses in the hippocampus. Neuron 19, 635–651 (1997).

  7. 7.

    , & Rapid dendritic morphogenesis in CA1 hippocampal dendrites induced by synaptic activity. Science 283, 1923–1927 (1999).

  8. 8.

    & Dendritic spine changes associated with hippocampal long-term synaptic plasticity. Nature 399, 66–70 (1999).

  9. 9.

    & A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361, 31–39 (1993).

  10. 10.

    , & Critical assessment of the involvement of perforations, spinules, and spine branching in hippocampal synapse formation. J. Comp. Neurol. 398, 225–240 (1998).

  11. 11.

    , , , & A new cytochemical method for the ultrastructural localization of calcium in the central nervous system. J. Neurosci. Methods 54, 83–93 (1994).

  12. 12.

    & Occurrence and three-dimensional structure of multiple synapses between individual radiatum axons and their target pyramidal cells in hippocampal area CA1. J. Neurosci. 13, 3736–3748 (1993).

  13. 13.

    & Three-dimensional organization of smooth endoplasmic reticulum in hippocampal CA1 dendrites and dendritic spines of the immature and mature rat. J. Neurosci. 17, 190–203 (1997).

  14. 14.

    , , , & Miniature synaptic events maintain dendritic spines via AMPA receptor activation. Nature Neurosci. 2, 44–49 (1999).

  15. 15.

    , , & Synaptogenesis via dendritic filopodia in developing hippocampal area CA1. J. Neurosci. 18, 8900–8911 (1998).

  16. 16.

    & Evidence for a role of dendritic filopodia in synaptogenesis and spine formation. Neuron 17, 91–102 (1996).

  17. 17.

    & Dimensions and density of dendritic spines from rat dentate granule cells based on reconstructions from serial electron micrographs. J. Comp. Neurol. 377, 15–28 (1997).

  18. 18.

    & Plasticity in the central nervous system: do synapses divide? Proc. Natl Acad. Sci. USA 80, 3517–3521 (1983).

  19. 19.

    , & Perforated postsynaptic densities: probable intermediates in synapse turnover. Proc. Natl Acad. Sci. USA 79, 5718–5722 (1982).

  20. 20.

    , , & Rapid actin-based plasticity in dendritic spines. Neuron 20, 847–854 (1998).

  21. 21.

    et al. Rapid spine delivery and redistribution of AMPA receptors after synaptic NMDA receptor activation. Science 284, 1811–1816 (1999).

  22. 22.

    , , , & Regulation of morphological postsynaptic silent synapses in developing hippocampal neurons. Nature Neurosci. 2, 37–43 (1999).

  23. 23.

    , & Estradiol increases the frequency of multiple synapse boutons in the hippocampal CA1 region of the adult female rat. J. Comp. Neurol. 373, 108–117 (1996).

  24. 24.

    , & Slices have more synapses than perfusion-fixed hippocampus from both young and mature rats. J. Neurosci. 19, 2876–2886 (1999).

  25. 25.

    , & An increase in dendritic spine density on hippocampal CA1 pyramidal cells following spatial learning in adult rats suggests the formation of new synapses. Proc. Natl Acad. Sci. USA 91, 12673–12675 (1994).

  26. 26.

    , , & Learning-dependent synaptic modifications in the cerebellar cortex of the adult rat persists for at least four weeks. J. Neurosci. 17, 717–721 (1997).

  27. 27.

    , & A simple method for organotypic cultures of nervous tissue. J. Neurosci. Methods 37, 173–182 (1991).

  28. 28.

    The unbiased estimation of number and sizes of arbitrary particles using the disector. J. Microsc. 134, 127–136 (1984).

Download references

Acknowledgements

We thank L. M. Cruz-Orive for advice on stereology; K. Harris for 3D reconstruction software; D. Smithies for morphometry software on AVS; L. Parisi and M. Moosmayer for culture preparation and technical assistance; and F. Pillonel for photographic work. This work was supported by the Swiss National Science Foundation, the Human Frontier Science Program, the National Priority Program and the Jean-Falk Vairant Foundation.

Author information

Affiliations

  1. *Neuropharmacology, CMU, University of Geneva, 1211 Geneva 4, Switzerland

    • N. Toni
    • , P.-A. Buchs
    • , I. Nikonenko
    •  & D. Muller
  2. †Institute of Anatomy, University of Bern, 3000 Bern, Switzerland

    • C. R. Bron

Authors

  1. Search for N. Toni in:

  2. Search for P.-A. Buchs in:

  3. Search for I. Nikonenko in:

  4. Search for C. R. Bron in:

  5. Search for D. Muller in:

Corresponding author

Correspondence to D. Muller.

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/46574

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.