Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations

Abstract

Algorithms such as quantum factoring1 and quantum search2 illustrate the great theoretical promise of quantum computers; but the practical implementation of such devices will require careful consideration of the minimum resource requirements, together with the development of procedures to overcome inevitable residual imperfections in physical systems3,4,5. Many designs have been proposed, but none allow a large quantum computer to be built in the near future6. Moreover, the known protocols for constructing reliable quantum computers from unreliable components can be complicated, often requiring many operations to produce a desired transformation3,4,5,7,8. Here we show how a single technique—a generalization of quantum teleportation9—reduces resource requirements for quantum computers and unifies known protocols for fault-tolerant quantum computation. We show that single quantum bit (qubit) operations, Bell-basis measurements and certain entangled quantum states such as Greenberger–Horne–Zeilinger (GHZ) states10—all of which are within the reach of current technology—are sufficient to construct a universal quantum computer. We also present systematic constructions for an infinite class of reliable quantum gates that make the design of fault-tolerant quantum computers much more straightforward and methodical.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Quantum circuit for teleportation.
Figure 2: Quantum circuit for teleporting two qubits through a controlled-NOT gate.
Figure 3: Quantum circuit to create the |χ〉 state.
Figure 4: Quantum circuit to perform U in a fault-tolerant manner using quantum teleportation.

References

  1. 1

    Shor,P. in Proc. 35th Annu. Symp. on Foundations of Computer Science (ed. Goldwasser, S.) 124–134 (IEEE Computer Society Press, Los Alomitos, 1994).

  2. 2

    Grover,L. K. Quantum computers can search arbitrarily large databases by a single query. Phys. Rev. Lett. 79, 4709–4012 (1997).

    ADS  CAS  Article  Google Scholar 

  3. 3

    Preskill,J. Reliable quantum computers. Proc. R. Soc. Lond. A 454, 385–410 (1998).

    ADS  Article  Google Scholar 

  4. 4

    Steane,A. M. Efficient fault tolerant quantum computing. Nature 399, 124–126 (1999).

    ADS  CAS  Article  Google Scholar 

  5. 5

    Gottesman,D. Theory of fault-tolerant quantum computation. Phys. Rev. A 57, 127–137 (1998).

    ADS  CAS  Article  Google Scholar 

  6. 6

    Preskill,J. Quantum computing: pro and con. Proc. R. Soc. Lond. A 454, 469–486 (1998).

    ADS  MathSciNet  CAS  Article  Google Scholar 

  7. 7

    Shor,P. W. in Proc. 37th Annu. Symp. on Foundations of Computer Science (IEEE Computer Society Press, Los Alamitos, 1996).

  8. 8

    Knill,E., Laflamme,R. & Zurek,W. Resilient quantum computation. Science 279, 342–345 (1998).

    ADS  CAS  Article  Google Scholar 

  9. 9

    Bennett,C. H. et al. Teleporting an unknown quantum state via dual classical and EPR channels. Phys. Rev. Lett. 70, 1895–1899 (1993).

    ADS  MathSciNet  CAS  Article  Google Scholar 

  10. 10

    Greenberger,D., Horne,M., Shimony,A. & Zeilinger,A. Bell's theorem without inequalities. Am. J. Phys. 58, 1131–1143 (1990).

    ADS  MathSciNet  Article  Google Scholar 

  11. 11

    Brassard,G. in PhysComp 96 (eds Toffoli, T., Biafore, M. & Leao, J.) 48–50 (New England Complex Systems Inst., Cambridge, Massachusetts, 1996).

  12. 12

    Gottesman,D. in Group22: Proc. XXII Int. Colloquium on Group Theoretical Methods in Physics (eds Corney, S. P., Delbourgo, R. & Jarvis, P. D.) 32–43 (International Press, Cambridge, Massachusetts, 1999).

  13. 13

    Nielsen,M. A. & Chuang,I. L. Programmable quantum gate arrays. Phys. Rev. Lett. 79, 321–324 (1997).

    ADS  MathSciNet  CAS  Article  Google Scholar 

  14. 14

    Barenco,A. et al. Elementary gates for quantum computation. Phys. Rev. A 52, 3457–3467 (1995).

    ADS  CAS  Article  Google Scholar 

  15. 15

    Calderbank,A. R., Rains,E. M., Shor,P. W. & Sloane,N. J. A. Quantum error correction and orthogonal geometry. Phys. Rev. Lett. 78, 405–408 (1997).

    ADS  MathSciNet  CAS  Article  Google Scholar 

  16. 16

    Steane,A. M. Multiple particle interference and quantum error correction. Proc. R. Soc. Lond. A 452, 2551–2576 (1996).

    ADS  MathSciNet  Article  Google Scholar 

  17. 17

    Steane,A. M. Error correcting codes in quantum theory. Phys. Rev. Lett. 77, 793–797 (1996).

    ADS  MathSciNet  CAS  Article  Google Scholar 

  18. 18

    Gottesman,D. Stabilizer Codes and Quantum Error Correction. Thesis, California Inst. of Technol. (1997).

    Google Scholar 

  19. 19

    Boykin,P. O., More,T., Pulver,M., Roychowdhury,V. & Vatan,F. On universal and fault-tolerant quantum computing. Preprint quant-ph/9906054 (cited June 1999) at 〈http://xxx.lanl.gov〉 (1999).

  20. 20

    Kwiat,P. G. & Weinfurter,H. Embedded Bell-state analysis. Phys. Rev. A 58, R2623–R2626 (1998).

    ADS  MathSciNet  CAS  Article  Google Scholar 

  21. 21

    Bouwmeester,D. et al. Experimental quantum teleportation. Nature 390, 575–579 (1997).

    ADS  CAS  Article  Google Scholar 

  22. 22

    Bouwmeester,D. et al. Observation of three-photon Greenberger-Horne-Zeilinger entanglement. Phys. Rev. Lett. 82, 1345–1349 (1999).

    ADS  MathSciNet  CAS  Article  Google Scholar 

  23. 23

    Chuang,I. L. & Yamamoto,Y. Simple quantum computer. Phys. Rev. A 52, 3489–3496 (1995).

    ADS  CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank C. Bennett for suggesting the concept of “quantum sofrware” to us, and R. Jozsa for pointing out an error in an early version of this manuscript. We also thank J. Kempe, D. Leung, and D. Bacon for helpful discussions. This work was supported in part by DARPA under the NMRQC initiative.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Isaac L. Chuang.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Gottesman, D., Chuang, I. Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations. Nature 402, 390–393 (1999). https://doi.org/10.1038/46503

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing