Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Accretion of low-metallicity gas by the Milky Way

Abstract

Models of the chemical evolution of the Milky Way suggest that the observed abundances of elements heavier than helium (‘metals’) require a continuous infall of gas with metallicity (metal abundance) about 0.1 times the solar value. An infall rate integrated over the entire disk of the Milky Way of 1 solar mass per year can solve the ‘G-dwarf problem’—the observational fact that the metallicities of most long-lived stars near the Sun lie in a relatively narrow range1,2,3. This infall dilutes the enrichment arising from the production of heavy elements in stars, and thereby prevents the metallicity of the interstellar medium from increasing steadily with time. However, in other spiral galaxies, the low-metallicity gas needed to provide this infall has been observed only in associated dwarf galaxies4 and in the extreme outer disk of the Milky Way5,6. In the distant Universe, low-metallicity hydrogen clouds (known as ‘damped Lyα absorbers’) are sometimes seen near galaxies7,8. Here we report a metallicity of 0.09 times solar for a massive cloud that is falling into the disk of the Milky Way. The mass flow associated with this cloud represents an infall per unit area of about the theoretically expected rate, and 0.1–0.2 times the amount required for the whole Galaxy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: All-sky map of the high-velocity clouds (HVCs) in Aitoff projection, from 21-cm surveys9.
Figure 2: Spectra on or centred on Markarian 290, aligned in velocity.

Similar content being viewed by others

References

  1. Van den Bergh,S. The frequency of stars with different metal abundances. Astron. J. 67, 486–490 (1962).

    Article  ADS  CAS  Google Scholar 

  2. Giovagnoli,A. & Tosi,M. Chemical evolution models with a new stellar nucleosynthesis. Mon. Not. R. Astron. Soc. 273, 499–504 (1995).

    Article  ADS  CAS  Google Scholar 

  3. Pagel,B. E. J. Nucleosynthesis and Chemical Evolution of Galaxies (Cambridge Univ. Press, 1997).

    Google Scholar 

  4. Skillman,E. D., Bomans,D. J. & Kobulnicky,H. A. Interstellar medium abundances in the Pegasus dwarf irregular galaxy. Astrophys. J. 474, 205–216 (1997).

    Article  ADS  CAS  Google Scholar 

  5. Rudolph,A. L., Simpson,J. P., Haas,M. R., Erickson,E. F. & Fich,M. Far-infrared abundance measurements in the outer galaxy. Astrophys. J. 489, 94–101 (1997).

    Article  ADS  CAS  Google Scholar 

  6. Ferguson,A. M. N., Gallagher,J. S. & Wyse,R. F. G. The extreme outer regions of disk galaxies. I. Chemical abundances of HII regions. Astron. J. 116, 673–690 (1998).

    Article  ADS  CAS  Google Scholar 

  7. Lu,L., Sargent,W. L. W. & Barlow,T. A. The N/Si abundance ratio in 15 damped Lyα galaxies: implications for the origin of nitrogen. Astron. J. 115, 55–61 (1998).

    Article  ADS  CAS  Google Scholar 

  8. Pettini,M., Ellison,S. L., Steidel,C. C. & Bowen,D. V. Metal abundances at z < 1.5: fresh clues to the chemical enrichment history of damped Lyα systems. Astrophys. J. 510, 576–589 (1999).

    Article  ADS  CAS  Google Scholar 

  9. Wakker,B. P. & van Woerden,H. High-velocity clouds. Annu. Rev. Astron. Astrophys. 35, 217–266 (1997).

    Article  ADS  CAS  Google Scholar 

  10. Savage,B. D. & Sembach,K. R. Interstellar abundances from absorption-line observations with the Hubble Space Telescope. Annu. Rev. Astron. Astrophys. 34, 279–329 (1996).

    Article  ADS  CAS  Google Scholar 

  11. Lu,L. et al. The metallicity and dust content of HVC 287.5 + 22.5 + 240: evidence for a Magellanic Clouds origin. Astron. J. 115, 162–167 (1998).

    Article  ADS  CAS  Google Scholar 

  12. Reynolds,R. J., Tufte,S. L., Haffner,L. M., Jaehnig,K. & Percival,J. W. The Wisconsin H-alpha Mapper (WHAM): A brief review of performance characteristics and early scientific results. Publ. Astron. Soc. Aust. 15, 14–18 (1998).

    Article  ADS  CAS  Google Scholar 

  13. Hartmann,D. & Burton,W. B. Atlas of Galactic Neutral Hydrogen (Cambridge Univ. Press, 1997).

    Google Scholar 

  14. Wakker,B. P. et al. in Stromlo Workshop on High-velocity Clouds (eds Gibson, B. K. & Putman, M. E.) 26–37 (ASP Conf. Ser. 166, Astronomical Soc. of the Pacific, San Francisco, 1999).

    Google Scholar 

  15. Anders,E. & Grevesse,N. Abundances of the elements—Meteoritic and solar. Geochim. Cosmochim. Acta 53, 197–214 (1989).

    Article  ADS  CAS  Google Scholar 

  16. van Woerden,H., Peletier,R. F., Schwarz,U. J., Wakker,B. P. & Kalberla,P. M. W. in Stromlo Workshop on High-velocity Clouds (eds Gibson, B. R. & Putman, M. E.) 1–25 (ASP Conf. Ser. 166, Astronomical Soc. of the Pacific, San Francisco, 1999).

    Google Scholar 

  17. van Woerden,H., Schwarz,U. J., Peletier,R. F., Wakker,B. P. & Kalberla,P. M. W. A confirmed location in the Galactic halo for the high-velocity cloud ‘Chain A’. Nature 400, 138–141 (1999).

    Article  ADS  CAS  Google Scholar 

  18. Snowden,S. L., Egger,R., Finkbeiner,D. P., Freyberg,M. J. & Plucinsky,P. P. Progress on establishing the spatial distribution of material responsible for the 1/4 kev soft x-ray diffuse background local and halo components. Astrophys. J. 493, 715–729 (1998).

    Article  ADS  Google Scholar 

  19. Wolfire,M. G., McKee,C. F., Hollenbach,D. & Tielens,A. G. G. M. The multiphase structure of the galactic halo: high-velocity clouds in a hot corona. Astrophys. J. 453, 673–684 (1995).

    Article  ADS  Google Scholar 

  20. Wakker,B. P., Murphy,E. M., van Woerden,H. & Dame,T. M. A sensitive search for molecular gas in high-velocity clouds. Astrophys. J. 488, 216–223 (1997).

    Article  ADS  CAS  Google Scholar 

  21. Bregman,J. N. The galactic fountain of high-velocity clouds. Astrophys. J. 236, 577–591 (1980).

    Article  ADS  CAS  Google Scholar 

  22. Blitz,L., Spergel,D., Teuben,P., Hartmann,D. & Burton,W. B. High velocity clouds: building blocks of the Local Group. Astrophys. J. 514, 818–843 (1999).

    Article  ADS  CAS  Google Scholar 

  23. Zwaan,M. A., Briggs,F. H., Sprayberry,D. & Sorar,E. The HI mass function of galaxies from a deep survey in the 21-cm line. Astrophys. J. 490, 173–186 (1997).

    Article  ADS  CAS  Google Scholar 

  24. Oort,J. H. The formation of galaxies and the origin of the high velocity hydrogen. Astron. Astrophys. 7, 381–404 (1970).

    ADS  Google Scholar 

  25. Yanny,B. & York,D. G. Emission-line objects near quasi-stellar object absorbers. III Clustering and colors of moderate redshift HII regions. Astrophys. J. 391, 569–576 (1992).

    Article  ADS  CAS  Google Scholar 

  26. Gardiner,L. T. & Noguchi,M. N-body simulations of the Small Magellanic Cloud and the Magellanic Stream. Mon. Not. R. Astron. Soc. 278, 191–208 (1996).

    Article  ADS  Google Scholar 

  27. Haffner,L. M., Reynolds,R. J. & Tufte,S. L. WHAM observations of Hα, SII, and NII toward the Perseus Arm: probing the physical conditions of the WIM. Astrophys. J. 523, 223–233 (1999).

    Article  ADS  CAS  Google Scholar 

  28. Verner,D. A., Barthel,P. D. & Tytler,D. Atomic data for absorption lines from the ground level at wavelengths greater than 228 Å. Astron. Astrophys. 108, 287–340 (1994).

    ADS  CAS  Google Scholar 

  29. Wakker,B. P., van Woerden,H., Schwarz,U. J., Peletier,R. F. & Douglas,N. G. The Ca+ abundance of HVC complex C. Astron. Astrophys. 306, L25–L28 (1996).

    ADS  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Space Telescope Science Institute. The Hubble Space Telescope is operated by the Association of Universities for Research in Astronomy, Inc. The Effelsberg Telescope belongs to the Max Planck Institute for Radio Astronomy in Bonn. The Westerbork Radio Observatory is operated by the Netherlands Foundation for Research in Astronomy (ASTRON/NFRA) with financial support from NWO.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. P. Wakker.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wakker, B., Howk, J., Savage, B. et al. Accretion of low-metallicity gas by the Milky Way. Nature 402, 388–390 (1999). https://doi.org/10.1038/46498

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/46498

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing