Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Progress
  • Published:

Active site-directed protein regulation

Abstract

Regulation of protein function is vital for the control of cellular processes. Proteins are often regulated by allosteric mechanisms, in which effectors bind to regulatory sites distinct from the active sites and alter protein function. Intrasteric regulation, directed at the active site and thus the counterpart of allosteric control, is now emerging as an important regulatory mechanism.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Representation of intrasteric regulation.
Figure 2: Three-dimensional (3D) structures of representative proteins under intrasteric control through active site-directed autoregulatory sequences.

Similar content being viewed by others

References

  1. Monod,J., Changeux,J. P. & Jacob,F. Allosteric proteins and cellular control systems. J. Mol. Biol. 6, 306–329 (1963).

    Article  CAS  Google Scholar 

  2. Kemp,B. E. & Pearson,R. B. Intrasteric regulation of protein kinases and phosphatases. Biochim. Biophys. Acta 1094, 67–76 (1991).

    Article  CAS  Google Scholar 

  3. Kemp,B. E. et al. in Protein Kinases (ed. Woodgett, J. R.) 30–67 (IRL, Oxford, 1994).

    Google Scholar 

  4. Knighton,D. R. et al. Structure of a peptide inhibitor bound to the catalytic subunit of cyclic adenosine monophosphate-dependent protein kinase. Science 253, 414–420 (1991).

    Article  ADS  CAS  Google Scholar 

  5. Hu,S.-H. et al. Insights into autoregulation from the crystal structure of twitchin kinase. Nature 369, 581–584 (1994).

    Article  ADS  CAS  Google Scholar 

  6. Mayans,O. et al. Structural basis for activation of the titin kinase domain during myofibrillogenesis. Nature 395, 863–869 (1998).

    Article  ADS  CAS  Google Scholar 

  7. Goldberg,J., Nairn,A. C. & Kuriyan,J. Structural basis for the auto-inhibition of calcium/calmodulin-dependent protein kinase I. Cell 84, 875–887 (1996).

    Article  CAS  Google Scholar 

  8. Kissinger,C. R. et al. Crystal structures of human calcineurin and the human FKBP12-FK506-calcineurin complex. Nature 378, 641–644 (1995).

    Article  ADS  CAS  Google Scholar 

  9. Kobe,B. et al. Giant protein kinases: domain interactions and structural basis of autoregulation. EMBO J. 15, 6810–6821 (1996).

    Article  CAS  Google Scholar 

  10. Heierhorst,J. et al. Ca2+/S100 regulation of giant protein kinases. Nature 380, 636–639 (1996).

    Article  ADS  CAS  Google Scholar 

  11. Hubbard,S. R., Wei,L., Ellis,L. & Hendrickson,W. A. Crystal structure of the tyrosine kinase domain of the human insulin receptor. Nature 372, 746–754 (1994).

    Article  ADS  CAS  Google Scholar 

  12. Hubbard,S. R. Crystal structure of the activated insulin receptor tyrosine kinase in complex with peptide substrate and ATP analog. EMBO J. 16, 5572–5581 (1997).

    Article  CAS  Google Scholar 

  13. Zhang,F., Strand,A., Robbins,D., Cobb,M. H. & Goldsmith,E. J. Atomic structure of the MAP kinase ERK2 at 2.3 Å resolution. Nature 367, 704–711 (1994).

    Article  ADS  CAS  Google Scholar 

  14. Canagarajah,B. J., Khokhlatchev,A., Cobb,M. H. & Goldsmith,E. J. Activation mechanism of the MAP kinase ERK2 by dual phosphorylation. Cell 90, 859–869 (1997).

    Article  CAS  Google Scholar 

  15. Barford,D., Das,A. K. & Egglof,M. P. The structure and mechanism of protein phosphatases: insights into catalysis and regulation. Annu. Rev. Biophys. Biomol. Struct. 27, 133–164 (1998).

    Article  CAS  Google Scholar 

  16. Hof,P., Pluskey,S., Dhe-Paganon,S., Eck,M. J. & Shoelson,S. E. Crystal structure of the tyrosine phosphatase SHP-2. Cell 92, 441–450 (1998).

    Article  CAS  Google Scholar 

  17. Bilwes,A. M., den Hertog,J., Hunter,T. & Noel,J. P. Structural basis for inhibition of receptor protein-tyrosine phosphatase-α by dimerization. Nature 382, 555–559 (1996).

    Article  ADS  CAS  Google Scholar 

  18. Jiang,G. et al. Dimerization inhibits the activity of receptor-like protein-tyrosine phosphatase-α. Nature 401, 606–610 (1999).

    Article  ADS  CAS  Google Scholar 

  19. Weiss, A. & Schlessinger, J. Switching signals on or off by receptor dimerization. Cell 94, 277–280 (1998).

    Article  Google Scholar 

  20. Khan,A. R. & James,M. N. G. Molecular mechanisms for the conversion of zymogens to activate proteolytic enzymes. Protein Sci. 7, 815–836 (1998).

    Article  CAS  Google Scholar 

  21. Freer,S. T., Kraut,J., Robertus,J. D., Wright,H. T. & Xuong,N. H. Chymotrypsinogen: 2.5-angstrom crystal structure, comparison with alpha-chymotrypsin, and implications for zymogen activation. Biochemistry 9, 1997–2009 (1970).

    Article  CAS  Google Scholar 

  22. Kossiakoff,A. A., Chambers,J. L., Kay,L. M. & Stroud,R. M. Structure of bovine trypsinogen at 1.9 Å resolution. Biochemistry 16, 654–664 (1977).

    Article  CAS  Google Scholar 

  23. Fehlhammer,H., Bode,W. & Huber,R. Crystal structure of bovine trypsinogen at 1–8 Å resolution. II. Crystallographic refinement, refined crystal structure and comparison with bovine trypsin. J. Mol. Biol. 111, 415–438 (1977).

    Article  CAS  Google Scholar 

  24. Bode,W. & Huber,R. Natural protein proteinase inhibitors and their interactions with proteinases. Eur. J. Biochem. 204, 433–452 (1992).

    Article  CAS  Google Scholar 

  25. Kobe,B. et al. Structural basis of autoregulation of phenylalanine hydroxylase. Nature Struct. Biol. 6, 442–448 (1999).

    Article  CAS  Google Scholar 

  26. Carr,P. D., Verger,D., Ashton,A. R. & Ollis,D. L. Chloroplast NADP-malate dehydrogenase: structural basis of light-dependent regulation of activity by thiol oxidation and reduction. Structure 7, 461–475 (1999).

    Article  CAS  Google Scholar 

  27. Johansson,K. et al. Structural basis for light activation of a chloroplast enzyme: the structure of sorghum NADP-malate dehydrogenase in its oxidized form. Biochemistry 38, 4319–4326 (1999).

    Article  CAS  Google Scholar 

  28. Lin,K., Hwang,P. & Fletterick,R. J. Distinct phosphorylation signals converge at the catalytic center in glycogen phosphorylase. Structure 5, 1511–1523 (1997).

    Article  CAS  Google Scholar 

  29. Johnson,L. N., Barford,D., Owen,D. J., Noble,M. E. & Garman,E. F. From phosphorylase to phosphorylase kinase. Adv. Second Messenger Phosphoprotein Res. 31, 11–28 (1997).

    Article  CAS  Google Scholar 

  30. Kobe,B. Autoinhibition by an internal nuclear localization signal revealed by the crystal structure of mammalian importin alpha. Nature Structur. Biol. 6, 388–397 (1999).

    Article  CAS  Google Scholar 

  31. Cignolani,G., Petosa,C., Weis,K. & Muller,C. W. Structure of importin-beta bound to the IBB domain of importin-alpha. Nature 399, 221–229 (1999).

    Article  ADS  Google Scholar 

  32. Moroianu,J., Blobel,G. & Radu,A. The binding site of karyopherin alpha for karyopherin beta overlaps with a nuclear localization sequence. Proc. Nat. Acad. Sci. USA 93, 6572–6576 (1996).

    Article  ADS  CAS  Google Scholar 

  33. Conti,E., Uy,M., Leighton,L., Blobel,G. & Kuriyan,J. Crystallographic analysis of the recognition of a nuclear localization signal by the nuclear import factor karyopherin alpha. Cell 94, 193–204 (1998).

    Article  CAS  Google Scholar 

  34. Gorlich,D., Henklein,P., Laskey,R. A. & Hartmann,E. A 41 amino acid motif in importin-alpha confers binding to importin-beta and hence transit into the nucleus. EMBO J. 15, 1810–1817 (1996).

    Article  CAS  Google Scholar 

  35. Weis,K., Ryder,U. & Lamond,A. I. The conserved amino-terminal domain of hSRP1 alpha is essential for nuclear protein import. EMBO J. 15, 1818–1825 (1996).

    Article  CAS  Google Scholar 

  36. Xu,W., Harrison,S. C. & Eck,M. J. Three-dimensional structure of the tyrosine kinase c-Src. Nature 385, 595–602 (1997).

    Article  ADS  CAS  Google Scholar 

  37. Sicheri,F., Moarefi,I. & Kuriyan,J. Crystal structure of the Src family tyrosine kinase Hck. Nature 385, 602–653 (1997).

    Article  ADS  CAS  Google Scholar 

  38. Williams,J. C. et al. The 2.35 Å crystal structure of the inactivated form of chicken Src: a dynamic molecule with multiple regulatory interactions. J. Mol. Biol. 274, 757–775 (1997).

    Article  CAS  Google Scholar 

  39. Moarefi,I. et al. Activation of the Src-family tyrosine kinase Hck by SH3 domain displacement. Nature 385, 650–653 (1997).

    Article  ADS  CAS  Google Scholar 

  40. Chinkers,M. & Garbers,D. L. The protein kinase domain of the ANP receptor is required for signalling. Science 245, 1392–1394 (1989).

    Article  ADS  CAS  Google Scholar 

  41. Morgan,D. O. Principles of CDK regulation. Nature 374, 131–134 (1995).

    Article  ADS  CAS  Google Scholar 

  42. Hurley,J. H., Dean,A. M., Sohl,J. L., Koshland,D. E. Jr & Stroud,R. M. Regulation of an enzyme by phosphorylation at the active site. Science 249, 1012–1016 (1991).

    Article  ADS  Google Scholar 

  43. Wang,H. et al. NMR solution structure of the 21 kDa chaperone protein DnaK substrate binding domain: a preview of chaperone-protein interaction. Biochemistry 37, 7929–7940 (1998).

    Article  CAS  Google Scholar 

  44. Morshauer,R. C. et al. High-resolution solution structure of the 18 kDa substrate-binding domain of the mammalian chaperone protein Hsc70. J. Mol. Biol. 289, 1387–1403 (1999).

    Article  Google Scholar 

  45. Park,H.-W., Boduluri,S. R., Moomaw,J. F., Casey,P. J. & Beese,L. S. Crystal structure of protein farnesyltransferase at 2.25 Angstrom resolution. Science 275, 1800–1804 (1997).

    Article  CAS  Google Scholar 

  46. Nicholls,A., Sharp,K. A. & Honig,B. Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins 11, 281–296 (1991).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Heierhorst, I. Jennings and other members of the protein research groups at St. Vincent's Institute for discussions; T. Teh for comments on the manuscript; and P. Carr for unpublished data. The work was supported by the National Health and Medical Research Council, Wellcome Trust, Australian Research Council and National Heart Foundation; B.K. is a Wellcome Senior Research Fellow in Medical Science in Australia; B.E.K. is an NHMRC Fellow.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bostjan Kobe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kobe, B., Kemp, B. Active site-directed protein regulation . Nature 402, 373–376 (1999). https://doi.org/10.1038/46478

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/46478

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing