Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • News & Views
  • Published:

Bioinorganic chemistry

Model offers intermediate insight

Chemical models of enzymes' active sites aid our understanding of biological reactions. Such a model of a reaction intermediate promises to advance our knowledge of the biochemistry of iron-containing haem enzymes.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Haems in enzyme active sites.

References

  1. Liu, J.-G. et al. Angew. Chem. Int. Edn 48, 9262–9267 (2009).

    Article  CAS  Google Scholar 

  2. Zhu, Y. & Silverman, R. B. Biochemistry 47, 2231–2243 (2008).

    Article  CAS  Google Scholar 

  3. Bertini, I., Gray, H. B., Stiefel, E. I. & Valentine, J. S. (eds) in Biological Inorganic Chemistry: Structure & Reactivity 319–442 (Univ. Science Books, 2007).

    Google Scholar 

  4. Davydov, R. M., Yoshida, T., Ikeda-Saito, M. & Hoffman, B. M. J. Am. Chem. Soc. 121, 10656–10657 (1999).

    Article  CAS  Google Scholar 

  5. Denisov, I. G., Mak, P. J., Makris, T. M., Sligar, S. G. & Kincaid, J. R. J. Phys. Chem. A 112, 13172–13179 (2008).

    Article  CAS  Google Scholar 

  6. Poulos, T. L. in Biological Inorganic Chemistry: Structure & Reactivity (eds Bertini, I., Gray, H. B., Stiefel, E. I. & Valentine, J. S.) 343–353 (Univ. Science Books, 2007).

    Google Scholar 

  7. Denisov, I. G., Makris, T. M., Sligar, S. G. & Schlichting, I. Chem. Rev. 105, 2253–2278 (2005).

    Article  CAS  Google Scholar 

  8. Groves, J. T. in Cytochrome P450: Structure, Mechanism and Biochemistry (ed. Ortiz de Montellano, P. R.) 1–44 (Kluwer Academic/Plenum, 2005).

    Book  Google Scholar 

  9. Meunier, B., de Visser, S. P. & Shaik, S. Chem. Rev. 104, 3947–3980 (2004).

    Article  CAS  Google Scholar 

  10. Ghosh, D., Griswold, J., Erman, M. & Pangborn, W. Nature 457, 219–223 (2009).

    Article  ADS  CAS  Google Scholar 

  11. Wertz, D. L. et al. J. Am. Chem. Soc. 120, 5331–5332 (1998).

    Article  CAS  Google Scholar 

  12. Marletta, M. A. J. Biol. Chem. 268, 12231–12234 (1993).

    CAS  PubMed  Google Scholar 

  13. Doukov, T., Li, H., Soltis, M. & Poulos, T. L. Biochemistry 48, 10246–10254 (2009).

    Article  CAS  Google Scholar 

  14. Matsui, T., Unno, M. & Ikeda-Saito, M. Acc. Chem. Res. doi:10.1021/ar9001685 (2009).

  15. Kim, E., Chufán, E. E., Kamaraj, K. & Karlin, K. D. Chem. Rev. 104, 1077–1134 (2004).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karlin, K. Model offers intermediate insight. Nature 463, 168–169 (2010). https://doi.org/10.1038/463168a

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/463168a

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research